Nothing
###########################################################################
# LPL.interval #
# #
# The purpose of the LPL.interval function is to estimate the lowest #
# posterior loss (LPL) interval. #
###########################################################################
LPL.interval <- function(Prior, Posterior, prob=0.95, plot=FALSE,
PDF=FALSE)
{
### Initial Checks
if(missing(Prior)) stop("Prior is required.")
if(missing(Posterior)) stop("Posterior is required.")
if(!is.vector(Prior)) Prior <- as.vector(Prior)
if(!is.vector(Posterior)) Posterior <- as.vector(Posterior)
if(length(Prior) != length(Posterior))
stop("Length mismatch between Prior and Posterior.")
if(any(!is.finite(Prior) | !is.finite(Posterior)))
stop("Non-finite values found in Prior or Posterior.")
name <- names(Posterior)
if(is.null(name)) name <- "Value"
### Expected Posterior Loss
ord <- order(Posterior)
Prior <- Prior[ord]
Posterior <- Posterior[ord]
loss <- KLD(Prior, Posterior)[[3]]
### Plot Expected Posterior Loss
if(plot == TRUE) {
if(PDF == TRUE) pdf("LPL.Plot.pdf")
par(mfrow=c(2,1))
plot(Posterior, loss, type="l", main="Posterior Loss",
xlab=name, ylab="E(Posterior Loss)")
polygon(c(min(Posterior), Posterior, max(Posterior)),
c(min(loss), loss, min(loss)),
col="gray", border="gray")}
### Find LPL Interval
n <- length(loss)
gap <- max(1, min(n - 1, round(n * prob)))
loss.sum <- init <- 1:(n - gap)
for (i in 1:length(init)) {
loss.sum[i] <- sum(loss[init[i]:(init[i]+gap)])}
min.init <- init[which.min(loss.sum)]
ans <- cbind(Posterior[min.init], Posterior[min.init+gap])
colnames(ans) <- c("Lower","Upper")
attr(ans, "LPL.Interval") <- prob
### Shade LPL Area
if(plot == TRUE) {
polygon(c(min(Posterior[min.init]),
Posterior[min.init:(min.init+gap)],
max(Posterior[min.init+gap])),
c(min(loss[min.init:(min.init+gap)]),
loss[min.init:(min.init+gap)],
min(loss[min.init:(min.init+gap)])),
col="black", border="black")
abline(v=0, col="red", lty=2)
kde <- kde.low <- kde.high <- density(Posterior)
kde.low$x <- kde$x[kde$x < ans[1,1]]
kde.low$y <- kde$y[which(kde$x < ans[1,1])]
kde.high$x <- kde$x[kde$x > ans[1,2]]
kde.high$y <- kde$y[which(kde$x > ans[1,2])]
plot(kde, xlab=name, ylab="Density",
main="LPL Probability Interval")
polygon(kde, col="black", border="black")
polygon(c(min(kde.low$x), kde.low$x, max(kde.low$x)),
c(min(kde.low$y), kde.low$y, min(kde.low$y)),
col="gray", border="gray")
polygon(c(min(kde.high$x), kde.high$x, max(kde.high$x)),
c(min(kde.high$y), kde.high$y, min(kde.high$y)),
col="gray", border="gray")
abline(v=0, col="red", lty=2)
if(PDF == TRUE) dev.off()}
return(ans)
}
#End
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.