Nothing
#' @title Plot a disc with its values
#'
#' @description Shows a schematic representation of the physical appearance
#' of one disc (one position in the reader)
#' and illustrates the measured or calculated values per grain location.
#'
#' @details Depending of the available plotting space, some optional elements might have not enough room
#' to be displayed. As this function is wrapped around the base plot function, one can also choose to add elements
#' manually.
#'
#' @param object [RLum.Results-class] or [numeric] (**required**): the values
#' to show, should have length 100.
#'
#' @param show_coordinates [logical] (*with default*): Show coordinates (1..10)
#' in x and in y direction. Defaults to `FALSE`.
#'
#' @param show_location_ids [logical] (*with default*): Show id with every
#' grain location (1..100). Defaults to `FALSE`.
#'
#' @param show_neighbours [logical] (*with default*): Show which
#' neighbour connections are taken into account if calculating Moran's I.
#' This makes sense when there are `NA` observations, or when a non-standard
#' neighbour setting is defined.
#'
#' @param show_positioning_holes [logical] (*with default*): Show the 3
#' positioning holes for orientation. Defaults to `TRUE`.
#'
#' @param df_neighbours [data.frame] (*with default*): only relevant if
#' `show_neighbours` is `TRUE`. Data frame indicating which borders to
#' consider, and their respective weights (see the description provided for
#' [calc_MoransI]). If `NULL` (default), this is constructed automatically by
#' the internal function `.get_Neighbours`.
#'
#' @param ignore_borders [logical] (*with default*): whether only grain
#' locations that do not lie on the border of the disc should be considered
#' (`FALSE` by default). Thus if `TRUE`, only the inner 8x8 grain locations
#' rather than the full 10x10 are considered. Ignored if `df_neighbours` is
#' not `NULL` or if `show_neighbours = FALSE`.
#'
#' @param str_transform [character] (*with default*): The observed value of each individual grain is
#' reflected in the size of a triangle (or other dot-like element). To account for large value differences,
#' the transformation from value to triangle size can be `"lin"` (linear), `"log"` (logarithmic) and `"sqrt"`
#' (square root). Defaults to `"sqrt"`, so that the surface is linear to the value. Note that
#' the log and sqrt transformations can come with an addition to avoid negative values. When the legend
#' is shown, the actual lower, middle and upper values are printed.
#'
#' @param ... other arguments to be given to the base R plot function, such
#' as `main`, `col` and `pch`. `legend` can be used to enable/disable the
#' legend (`FALSE` by default).
#'
#' @author Anna-Maartje de Boer, Luc Steinbuch, Wageningen University & Research, 2025
#'
#' @references
#' de Boer, A-M., Steinbuch, L., Heuvelink, G.B.M., Wallinga, J., 2025.
#' A novel tool to assess crosstalk in single-grain luminescence detection.
#' Submitted.
#'
#' @examples
#'
#' plot_SingleGrainDisc(1:100)
#'
#' @md
#' @export
plot_SingleGrainDisc <- function(object,
show_coordinates = FALSE,
show_location_ids = FALSE,
show_neighbours = FALSE,
show_positioning_holes = TRUE,
df_neighbours = NULL,
ignore_borders = FALSE,
str_transform = "sqrt", # Options: "lin", "log" and "sqrt"
...
) {
.set_function_name("plot_SingleGrainDisc")
on.exit(.unset_function_name(), add = TRUE)
## Validate input arguments -----------------------
.validate_class(object, c("RLum.Results", "numeric", "integer"))
if (is.numeric(object)) {
vn_values_to_show <- object
} else {
vn_values_to_show <- get_RLum(object)
}
.validate_length(vn_values_to_show, 100, name = "'object'")
if (all(is.na(vn_values_to_show))) {
.throw_error("'object' should contain at least one non-NA value")
}
.validate_logical_scalar(show_coordinates)
.validate_logical_scalar(show_location_ids)
.validate_logical_scalar(show_neighbours)
.validate_logical_scalar(show_positioning_holes)
if (is.null(df_neighbours)) {
.validate_logical_scalar(ignore_borders)
df_neighbours <- .get_Neighbours(object, ignore_borders)
} else {
.validate_class(df_neighbours, "data.frame")
if (ncol(df_neighbours) != 3)
.throw_error("'df_neighbours' should be a data frame with 3 columns")
}
.validate_args(str_transform, c("sqrt", "lin", "log"))
## get ... arguments
plot_settings <- modifyList(
x = list(
main = "",
legend = FALSE,
col = "darkolivegreen",
pch = 17),
val = list(...))
## Settings -----------------------
n_lb_cex <- 0.8 # lower bound of plotted grain value size
n_ub_cex <- 3.2 # upper bound of plotted grain value size
str_title <- plot_settings$main
## Scaling from value to point size -----------------------
if(sum(!is.na(vn_values_to_show)) == 1)
{
## Scale if there is one observation
vn_range_values <- range(c(vn_values_to_show, 0), na.rm = TRUE)
n_mean_value <- mean(vn_range_values)
vn_values_to_show[101] <- n_mean_value ## Temporarily add mean value to vector for scaling
vn_values_to_show <- (vn_values_to_show-vn_range_values[1]) / diff(vn_range_values)
} else
{
vn_range_values <- range(vn_values_to_show, na.rm = TRUE)
n_mean_value <- mean(vn_range_values)
vn_values_to_show[101] <- n_mean_value ## Temporarily add mean value to vector for scaling
if(str_transform == "lin") # No transformation, just rescaling
{
## Scale to from 0 to inf
vn_values_to_show <- vn_values_to_show - min(vn_values_to_show , na.rm = TRUE)
## Scale to from n_ub_cex to n_lb_cex)
vn_values_to_show <- (vn_values_to_show)/
(max(vn_values_to_show , na.rm = TRUE) / (n_ub_cex - n_lb_cex) ) +
n_lb_cex
}
else if (str_transform == "log") {
## Scale to from 1 to inf, also to avoid problems with non-positive values
vn_values_to_show <- vn_values_to_show - min(vn_values_to_show , na.rm = TRUE) + 1
## Transform
vn_values_to_show <- log(vn_values_to_show)
## Scale to from n_ub_cex to n_lb_cex
vn_values_to_show <- (vn_values_to_show)/
(max(vn_values_to_show , na.rm = TRUE) / (n_ub_cex - n_lb_cex) ) +
n_lb_cex
}
else if (str_transform == "sqrt") {
## Scale to from 0 to inf
vn_values_to_show <- vn_values_to_show - min(vn_values_to_show , na.rm = TRUE)
## Transform
vn_values_to_show <- sqrt(vn_values_to_show)
## Scale to from n_ub_cex to n_lb_cex)
vn_values_to_show <- (vn_values_to_show)/
(max(vn_values_to_show , na.rm = TRUE) / (n_ub_cex - n_lb_cex) ) +
n_lb_cex
}
}
n_mv_cex <- vn_values_to_show[101] ## Extract mean value point size
vn_values_to_show <- vn_values_to_show[-101]
## Plotting -----------------------
df_disc <- data.frame(x = rep(1:10, length.out=100),
y = rep(1:10, each=10)
)
## remove used arguments to avoid collisions
args <- list(...)
args <- args[!...names() %in% c("main", "legend", "col", "pch")]
do.call(
what = plot,
args = c(list(
x = df_disc$x,
y = df_disc$y,
cex = vn_values_to_show,
asp = 1,
col = plot_settings$col,
pch = plot_settings$pch,
xlab = "",
ylab = "",
xlim = c(1,10),
ylim = c(10,1),
axes = FALSE,
mar = c(4, 4, 6, 0.5)),
args))
## Show title (if any)
if (show_positioning_holes || show_coordinates) {
## move title up
mtext(str_title, side = 3, line = 2.5, adj = 0.5, cex=1.3)
} else
{
mtext(str_title, side = 3, line = 1, adj = 0.5, cex=1.5)
}
## Show NA values
if(any(is.na(vn_values_to_show)))
{
points(x = df_disc$x,
y = df_disc$y,
cex = 0.5,
pch = ifelse(is.na(vn_values_to_show), 4, NA),
col = "orange"
)
}
## Show coordinates along axes
if (show_coordinates) {
axis(1, pos=-0.4, at=1:10, lwd=1, lwd.ticks=1)
axis(4, pos=-0.3, at=1:10, las=2, lwd=1, lwd.ticks=1)
}
## Show all grain location id's
if (show_location_ids) {
text(x = df_disc$x-0.2,
y = df_disc$y-0.2,
labels = 1:100,
cex = 0.5,
col = "black"
)
}
## Show the 3 big positioning holes
if (show_positioning_holes) {
## left middle right
points(x = c(-0.25, 5.5, 11.2),
y = c(5.5, 0, 5.5),
pch = 1,
cex = 5,
xpd=NA
)
}
## Indicate neighbouring positions used for Moran's I calculations
if (show_neighbours) {
n_lines <- nrow(df_neighbours)
if (n_lines == 0)
.throw_error("'show_neighbours' is TRUE but 'df_neighbours' is empty")
## From location ID to x y coordinates; put into lists for use with mapply
list_x <- split((df_neighbours[,1:2] - 1) %% 10 + 1,
1:n_lines )
list_y <- split((df_neighbours[,1:2] - 1) %/% 10 + 1,
1:n_lines )
## Scale weights for nice plotting
li_weight <- split((2 * df_neighbours$weight / max(df_neighbours$weight)),
1:n_lines)
mapply(lines, x = list_x, y = list_y, col = c("purple"), lwd = li_weight, lty = 'dotted')
}
if (plot_settings$legend) {
pch <- plot_settings$pch
col <- plot_settings$col
n_low <- prettyNum(x = vn_range_values[1], digits = 2, format = "fg")
n_mean <- prettyNum(x = n_mean_value, digits = 2, format = "fg")
n_high <- prettyNum(x = vn_range_values[2], digits = 2, format = "fg")
vs_legend <- c( n_low, n_mean, n_high )
vn_pch <- c( pch, pch, pch)
vs_lty <- c( NA, NA, NA)
vs_cols <- c( col, col, col)
vn_pt_cex <- c( n_lb_cex, n_mv_cex, n_ub_cex)
## if also NA values
if(any(is.na(vn_values_to_show)))
{
vs_legend <- c(vs_legend, "No obs.")
vn_pch <- c(vn_pch, 4 )
vs_lty <- c(vs_lty, NA)
vs_cols <- c(vs_cols, "orange")
vn_pt_cex <- c(vn_pt_cex, 0.5)
}
if (show_neighbours) {
vs_legend <- c(vs_legend, "Neighb.")
vn_pch <- c(vn_pch, NA )
vs_lty <- c(vs_lty, 'dotted')
vs_cols <- c(vs_cols, "purple")
vn_pt_cex <- c(vn_pt_cex, NA)
}
legend(x = -0.0,
y = 10.5,
legend = vs_legend,
pch = vn_pch,
lty= vs_lty,
lwd = 1,
col = vs_cols,
pt.cex = vn_pt_cex,
cex = 0.8,
bg = "gray98",
horiz = TRUE,
adj = c(0, 0.75),
y.intersp=1.4,
xpd=TRUE
)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.