Nothing
## sample from the posterior distribution
## of a binary model with multiple changepoints
## using linked C++ code in Scythe
##
## Written by JHP 07/01/2007
## Revised by JHP 07/16/2009
#' Markov Chain Monte Carlo for a Binary Multiple Changepoint Model
#'
#' This function generates a sample from the posterior distribution of
#' a binary model with multiple changepoints. The function uses the
#' Markov chain Monte Carlo method of Chib (1998). The user supplies
#' data and priors, and a sample from the posterior distribution is
#' returned as an mcmc object, which can be subsequently analyzed with
#' functions provided in the coda package.
#'
#' \code{MCMCbinaryChange} simulates from the posterior distribution
#' of a binary model with multiple changepoints.
#'
#' The model takes the following form: \deqn{Y_t \sim
#' \mathcal{B}ernoulli(\phi_i),\;\; i = 1, \ldots, k} Where \eqn{k}
#' is the number of states.
#'
#' We assume Beta priors for \eqn{\phi_{i}} and for transition
#' probabilities: \deqn{\phi_i \sim \mathcal{B}eta(c_0, d_0)} And:
#' \deqn{p_{mm} \sim \mathcal{B}eta{a}{b},\;\; m = 1, \ldots, k} Where
#' \eqn{M} is the number of states.
#'
#' @param data The data.
#'
#' @param m The number of changepoints.
#'
#' @param c0 \eqn{c_0} is the shape1 parameter for Beta prior on
#' \eqn{\phi} (the mean).
#'
#' @param d0 \eqn{d_0} is the shape2 parameter for Beta prior on
#' \eqn{\phi} (the mean).
#'
#' @param a \eqn{a} is the shape1 beta prior for transition
#' probabilities. By default, the expected duration is computed and
#' corresponding a and b values are assigned. The expected duration
#' is the sample period divided by the number of states.
#'
#' @param b \eqn{b} is the shape2 beta prior for transition
#' probabilities. By default, the expected duration is computed and
#' corresponding a and b values are assigned. The expected duration
#' is the sample period divided by the number of states.
#'
#' @param burnin The number of burn-in iterations for the sampler.
#'
#' @param mcmc The number of MCMC iterations after burn-in.
#'
#' @param thin The thinning interval used in the simulation. The
#' number of MCMC iterations must be divisible by this value.
#'
#' @param verbose A switch which determines whether or not the
#' progress of the sampler is printed to the screen. If
#' \code{verbose} is greater than 0, the iteration number and the
#' posterior density samples are printed to the screen every
#' \code{verbose}th iteration.
#'
#' @param seed The seed for the random number generator. If NA,
#' current R system seed is used.
#'
#' @param phi.start The starting values for the mean. The default
#' value of NA will use draws from the Uniform distribution.
#'
#' @param P.start The starting values for the transition matrix. A
#' user should provide a square matrix with dimension equal to the
#' number of states. By default, draws from the \code{Beta(0.9,
#' 0.1)} are used to construct a proper transition matrix for each
#' raw except the last raw.
#'
#' @param marginal.likelihood How should the marginal likelihood be
#' calculated? Options are: \code{none} in which case the marginal
#' likelihood will not be calculated, and \code{Chib95} in which
#' case the method of Chib (1995) is used.
#'
#' @param ... further arguments to be passed
#'
#' @return An mcmc object that contains the posterior sample. This
#' object can be summarized by functions provided by the coda
#' package. The object contains an attribute \code{prob.state}
#' storage matrix that contains the probability of \eqn{state_i} for
#' each period, and the log-marginal likelihood of the model
#' (\code{logmarglike}).
#'
#' @export
#'
#' @seealso \code{\link{MCMCpoissonChange}},\code{\link{plotState}},
#' \code{\link{plotChangepoint}}
#'
#' @references Jong Hee Park. 2011. ``Changepoint Analysis of Binary
#' and Ordinal Probit Models: An Application to Bank Rate Policy
#' Under the Interwar Gold Standard."
#' \emph{Political Analysis}. 19: 188-204.
#' <doi:10.1093/pan/mpr007>
#'
#' Andrew D. Martin, Kevin M. Quinn, and Jong Hee Park. 2011.
#' ``MCMCpack: Markov Chain Monte Carlo in R.'', \emph{Journal of
#' Statistical Software}. 42(9): 1-21.
#' \doi{10.18637/jss.v042.i09}.
#'
#' Siddhartha Chib. 1995. ``Marginal Likelihood from the Gibbs
#' Output.'' \emph{Journal of the American Statistical
#' Association}. 90: 1313-1321. <doi: 10.1080/01621459.1995.10476635>
#'
#' @keywords models
#'
#' @examples
#'
#' \dontrun{
#' set.seed(19173)
#' true.phi<- c(0.5, 0.8, 0.4)
#'
#' ## two breaks at c(80, 180)
#' y1 <- rbinom(80, 1, true.phi[1])
#' y2 <- rbinom(100, 1, true.phi[2])
#' y3 <- rbinom(120, 1, true.phi[3])
#' y <- as.ts(c(y1, y2, y3))
#'
#' model0 <- MCMCbinaryChange(y, m=0, c0=2, d0=2, mcmc=100, burnin=100, verbose=50,
#' marginal.likelihood = "Chib95")
#' model1 <- MCMCbinaryChange(y, m=1, c0=2, d0=2, mcmc=100, burnin=100, verbose=50,
#' marginal.likelihood = "Chib95")
#' model2 <- MCMCbinaryChange(y, m=2, c0=2, d0=2, mcmc=100, burnin=100, verbose=50,
#' marginal.likelihood = "Chib95")
#' model3 <- MCMCbinaryChange(y, m=3, c0=2, d0=2, mcmc=100, burnin=100, verbose=50,
#' marginal.likelihood = "Chib95")
#' model4 <- MCMCbinaryChange(y, m=4, c0=2, d0=2, mcmc=100, burnin=100, verbose=50,
#' marginal.likelihood = "Chib95")
#' model5 <- MCMCbinaryChange(y, m=5, c0=2, d0=2, mcmc=100, burnin=100, verbose=50,
#' marginal.likelihood = "Chib95")
#'
#' print(BayesFactor(model0, model1, model2, model3, model4, model5))
#'
#' ## plot two plots in one screen
#' par(mfrow=c(attr(model2, "m") + 1, 1), mai=c(0.4, 0.6, 0.3, 0.05))
#' plotState(model2, legend.control = c(1, 0.6))
#' plotChangepoint(model2, verbose = TRUE, ylab="Density", start=1, overlay=TRUE)
#'
#' }
#'
"MCMCbinaryChange"<-
function(data, m = 1, c0 = 1, d0 = 1, a = NULL, b = NULL,
burnin = 10000, mcmc = 10000, thin = 1, verbose = 0,
seed = NA, phi.start = NA, P.start = NA,
marginal.likelihood = c("none", "Chib95"), ...) {
## check iteration parameters
check.mcmc.parameters(burnin, mcmc, thin)
totiter <- mcmc + burnin
cl <- match.call()
## seeds
seeds <- form.seeds(seed)
lecuyer <- seeds[[1]]
seed.array <- seeds[[2]]
lecuyer.stream <- seeds[[3]]
if(!is.na(seed)) set.seed(seed)
## sample size
y <- as.matrix(data)
n <- nrow(y)
ns <- m+1
## get marginal likelihood argument
marginal.likelihood <- match.arg(marginal.likelihood)
## following MCMCregress, set chib as binary
logmarglike <- NULL
chib <- 0
if (marginal.likelihood == "Chib95"){
chib <- 1
}
nstore <- mcmc/thin
if (m == 0){
b0 <- c0/(c0 + d0)
B0 <- c0*d0/(c0 + d0)^2*(c0 + d0 + 1)
output <- MCMCprobit(y~1, burnin = burnin, mcmc = mcmc,
thin = thin, verbose = verbose, b0 = b0, B0 = B0,
marginal.likelihood = marginal.likelihood)
attr(output, "y") <- y
}
else {
## prior for transition matrix
A0 <- trans.mat.prior(m=m, n=n, a=a, b=b)
Pstart <- check.P(P.start, m=m, a=a, b=b)
phistart <- check.theta(phi.start, ns, y, min=0, max=1)
## call C++ code to draw sample
posterior <- .C("cMCMCbinaryChange",
phiout = as.double(rep(0.0, nstore*ns)),
Pout = as.double(rep(0.0, nstore*ns*ns)),
psout = as.double(rep(0.0, n*ns)),
sout = as.double(rep(0.0, nstore*n)),
Ydata = as.double(y),
Yrow = as.integer(nrow(y)),
Ycol = as.integer(ncol(y)),
m = as.integer(m),
burnin = as.integer(burnin),
mcmc = as.integer(mcmc),
thin = as.integer(thin),
verbose = as.integer(verbose),
lecuyer=as.integer(lecuyer),
seedarray=as.integer(seed.array),
lecuyerstream=as.integer(lecuyer.stream),
phistart = as.double(phistart),
Pstart = as.double(Pstart),
a = as.double(a),
b = as.double(b),
c0 = as.double(c0),
d0 = as.double(d0),
A0data = as.double(A0),
logmarglikeholder = as.double(0.0),
chib = as.integer(chib))
## get marginal likelihood if Chib95
if (marginal.likelihood == "Chib95"){
logmarglike <- posterior$logmarglikeholder
}
## pull together matrix and build MCMC object to return
phi.holder <- matrix(posterior$phiout, nstore, )
P.holder <- matrix(posterior$Pout, nstore, )
s.holder <- matrix(posterior$sout, nstore, )
ps.holder <- matrix(posterior$psout, n, )
output <- mcmc(data=phi.holder, start=burnin+1, end=burnin + mcmc, thin=thin)
varnames(output) <- paste("phi.", 1:ns, sep = "")
attr(output,"title") <- "MCMCbinaryChange Posterior Sample"
attr(output, "y") <- y
attr(output, "m") <- m
attr(output, "call") <- cl
attr(output, "logmarglike") <- logmarglike
attr(output, "prob.state") <- ps.holder/nstore
attr(output, "s.store") <- s.holder
}
return(output)
}## end of MCMC function
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.