Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
library(MECfda)
## ----fd-----------------------------------------------------------------------
fv = functional_variable(
X = matrix(rnorm(10*24),10,24),
t_0 = 0,
period = 1,
t_points = (0:9)/10
)
dim(fv)
## ----c1-----------------------------------------------------------------------
fsc = Fourier_series(
double_constant = 3,
cos = c(0,2/3),
sin = c(1,7/5),
k_cos = 1:2,
k_sin = 1:2,
t_0 = 0,
period = 1
)
plot(fsc)
FourierSeries2fun(fsc,seq(0,1,0.05))
extractCoef(fsc)
## ----c2-----------------------------------------------------------------------
bsb = bspline_basis(
Boundary.knots = c(0,24),
df = 7,
degree = 3
)
bss = bspline_series(
coef = c(2,1,3/4,2/3,7/8,5/2,19/10),
bspline_basis = bsb
)
plot(bss)
bsplineSeries2fun(bss,seq(0,24,0.5))
## ----basis2fun----------------------------------------------------------------
basis2fun(fsc,seq(0,1,0.05))
basis2fun(bss,seq(0,24,0.5))
## ----be-----------------------------------------------------------------------
data(MECfda.data.sim.0.0)
fv = MECfda.data.sim.0.0$FC[[1]]
BE.fs = fourier_basis_expansion(fv,5L)
BE.bs = bspline_basis_expansion(fv,5L,3L)
## ----shili1, eval = FALSE-----------------------------------------------------
# fcRegression(Y, FC, Z, formula.Z, family = gaussian(link = "identity"),
# basis.type = c("Fourier", "Bspline"), basis.order = 6L,
# bs_degree = 3)
## ----fcglmm-------------------------------------------------------------------
data(MECfda.data.sim.0.0)
res = fcRegression(FC = MECfda.data.sim.0.0$FC,
Y=MECfda.data.sim.0.0$Y,
Z=MECfda.data.sim.0.0$Z,
family = gaussian(link = "identity"),
basis.order = 5, basis.type = c('Bspline'),
formula.Z = ~ Z_1 + (1|Z_2))
t = (0:100)/100
plot(x = t, y = fc.beta(res,1,t), ylab = expression(beta[1](t)))
plot(x = t, y = fc.beta(res,2,t), ylab = expression(beta[2](t)))
data(MECfda.data.sim.1.0)
predict(object = res, newData.FC = MECfda.data.sim.1.0$FC,
newData.Z = MECfda.data.sim.1.0$Z)
## ----shili2, eval = FALSE-----------------------------------------------------
# fcQR(Y, FC, Z, formula.Z, tau = 0.5, basis.type = c("Fourier", "Bspline"),
# basis.order = 6L, bs_degree = 3)
## ----fcqr---------------------------------------------------------------------
data(MECfda.data.sim.0.0)
res = fcQR(FC = MECfda.data.sim.0.0$FC,
Y=MECfda.data.sim.0.0$Y,
Z=MECfda.data.sim.0.0$Z,
tau = 0.5,
basis.order = 5, basis.type = c('Bspline'),
formula.Z = ~ .)
t = (0:100)/100
plot(x = t, y = fc.beta(res,1,t), ylab = expression(beta[1](t)))
plot(x = t, y = fc.beta(res,2,t), ylab = expression(beta[2](t)))
data(MECfda.data.sim.1.0)
predict(object = res, newData.FC = MECfda.data.sim.1.0$FC,
newData.Z = MECfda.data.sim.1.0$Z)
## ----shili3, eval = FALSE-----------------------------------------------------
# ME.fcRegression_MEM(
# data.Y,
# data.W,
# data.Z,
# method = c("UP_MEM", "MP_MEM", "average"),
# t_interval = c(0, 1),
# t_points = NULL,
# d = 3,
# family.W = c("gaussian", "poisson"),
# family.Y = "gaussian",
# formula.Z,
# basis.type = c("Fourier", "Bspline"),
# basis.order = NULL,
# bs_degree = 3,
# smooth = FALSE,
# silent = TRUE
# )
## ----MEM, eval = FALSE--------------------------------------------------------
# data(MECfda.data.sim.0.1)
# res = ME.fcRegression_MEM(data.Y = MECfda.data.sim.0.1$Y,
# data.W = MECfda.data.sim.0.1$W,
# data.Z = MECfda.data.sim.0.1$Z,
# method = 'UP_MEM',
# family.W = "gaussian",
# basis.type = 'Bspline')
## ----shili4, eval = FALSE-----------------------------------------------------
# ME.fcQR_IV.SIMEX(
# data.Y,
# data.W,
# data.Z,
# data.M,
# tau = 0.5,
# t_interval = c(0, 1),
# t_points = NULL,
# formula.Z,
# basis.type = c("Fourier", "Bspline"),
# basis.order = NULL,
# bs_degree = 3
# )
## ----iv.simex, eval = FALSE---------------------------------------------------
# rm(list = ls())
# data(MECfda.data.sim.0.2)
# res = ME.fcQR_IV.SIMEX(data.Y = MECfda.data.sim.0.2$Y,
# data.W = MECfda.data.sim.0.2$W,
# data.Z = MECfda.data.sim.0.2$Z,
# data.M = MECfda.data.sim.0.2$M,
# tau = 0.5,
# basis.type = 'Bspline')
## ----shili5, eval = FALSE-----------------------------------------------------
# ME.fcQR_CLS(
# data.Y,
# data.W,
# data.Z,
# tau = 0.5,
# t_interval = c(0, 1),
# t_points = NULL,
# grid_k,
# grid_h,
# degree = 45,
# observed_X = NULL
# )
## ----cls, eval = FALSE--------------------------------------------------------
# rm(list = ls())
# data(MECfda.data.sim.0.1)
# res = ME.fcQR_CLS(data.Y = MECfda.data.sim.0.1$Y,
# data.W = MECfda.data.sim.0.1$W,
# data.Z = MECfda.data.sim.0.1$Z,
# tau = 0.5,
# grid_k = 4:7,
# grid_h = 1:2)
## ----shili6, eval = FALSE-----------------------------------------------------
# ME.fcLR_IV(
# data.Y,
# data.W,
# data.M,
# t_interval = c(0, 1),
# t_points = NULL,
# CI.bootstrap = F
# )
## ----lriv, eval = FALSE-------------------------------------------------------
# rm(list = ls())
# data(MECfda.data.sim.0.3)
# res = ME.fcLR_IV(data.Y = MECfda.data.sim.0.3$Y,
# data.W = MECfda.data.sim.0.3$W,
# data.M = MECfda.data.sim.0.3$M)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.