Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
eval = FALSE
)
## ----setup--------------------------------------------------------------------
# library(MOCHA)
# library(ArchR)
# library(TxDb.Hsapiens.UCSC.hg38.refGene)
# library(org.Hs.eg.db)
# library(BSgenome.Hsapiens.UCSC.hg19)
## -----------------------------------------------------------------------------
# # You should substitute this with your own ArchR project.
# # You must have completed cell labeling with your ArchR project.
#
# ArchRProj <- ArchR::loadArchRProject("/home/jupyter/FullCovid")
#
# metadata <- data.table::as.data.table(ArchR::getCellColData(ArchRProj))
# studySignal <- median(metadata$nFrags)
#
# # Get metadata information at the sample level
# lookup_table <- unique(
# metadata[, c(
# "Sample",
# "COVID_status",
# "Visit",
# "days_since_symptoms"
# ),
# with = FALSE
# ]
# )
#
# # Subset to visit 1 and extract samples
# samplesToKeep <- lookup_table$Sample[
# lookup_table$Visit == "FH3 COVID-19 Visit 1" &
# lookup_table$days_since_symptoms <= 15 |
# is.na(lookup_table$days_since_symptoms)
# ]
#
# # subset ArchR Project
# idxSample <- BiocGenerics::which(ArchRProj$Sample %in% samplesToKeep)
# cellsSample <- ArchRProj$cellNames[idxSample]
# ArchRProj <- ArchRProj[cellsSample, ]
#
## -----------------------------------------------------------------------------
# # Parameters for calling open tiles.
# cellPopLabel <- "CellSubsets"
# cellPopulations <- c("CD16 Mono")
# numCores <- 20
## -----------------------------------------------------------------------------
# tileResults <- MOCHA::callOpenTiles(
# ArchRProj,
# cellPopLabel = cellPopLabel,
# cellPopulations = cellPopulations,
# TxDb = "TxDb.Hsapiens.UCSC.hg38.refGene",
# Org = "org.Hs.eg.db",
# numCores = numCores,
# studySignal = studySignal,
# outDir = tempdir()
# )
## -----------------------------------------------------------------------------
# # Computing the TSAM can take into account groupings of
# # samples when determining consensus tiles.
# # Our samples can be grouped by the metadata column 'COVID_status'
# # into 'Positive' and 'Negative' groups.
# # Since these groupings may have unique biology and we expect differences
# # in accessibility, we want to compute consensus tiles on each
# # group independently and take the union of consensus tiles from each group.
# groupColumn <- "COVID_status"
#
# # We set the threshold to require a tile must be open in at least
# # (0.2 * the number of samples in each group) samples to be
# # retained
# threshold <- 0.2
#
# # Alternatively, you can set the threshold to 0 to keep the union of
# # all samples' open tiles.
# # This is equivalent to setting a threshold that would retain
# # tiles that are open in at least one sample.
#
# SampleTileMatrices <- MOCHA::getSampleTileMatrix(
# tileResults,
# cellPopulations = "CD16 Mono",
# groupColumn = groupColumn,
# threshold = threshold,
# verbose = FALSE
# )
#
## -----------------------------------------------------------------------------
# # This function can also take any GRanges object
# # and add annotations to its metadata.
# SampleTileMatricesAnnotated <- MOCHA::annotateTiles(SampleTileMatrices)
#
# # Load a curated motif set from library(chromVARmotifs)
# # included with ArchR installation
# data(human_pwms_v2)
# SampleTileMatricesAnnotated <- MOCHA::addMotifSet(
# SampleTileMatricesAnnotated,
# pwms = human_pwms_v2,
# w = 7 # weight parameter for motifmatchr
# )
## -----------------------------------------------------------------------------
# regionToPlot = "chr4:XXX-XXXX"
#
# countSE <- MOCHA::extractRegion(
# SampleTileObj = SampleTileMatrices,
# cellPopulations = "CD16 Mono",
# region = regionToPlot,
# groupColumn = "COVID_status",
# numCores = numCores,
# sampleSpecific = FALSE
# )
# dev.off()
# pdf("ExamplePlot.pdf")
# # Note that to show specific genes with the option' whichGene'
# # you must have the package RMariaDB installed
# MOCHA::plotRegion(countSE = countSE, whichGene = "MYD88")
# dev.off()
#
## -----------------------------------------------------------------------------
# cellPopulation <- "CD16 Mono"
# groupColumn <- "COVID_status"
# foreground <- "Positive"
# background <- "Negative"
#
# # Choose to output a GRanges or data.frame.
# # Default is TRUE
# outputGRanges <- TRUE
#
# # Optional: Standard output will display the number of tiles found
# # below a false-discovery rate threshold.
# # This parameter does not filter results and only affects the
# # afforementioned message.
# fdrToDisplay <- 0.2
#
# differentials <- MOCHA::getDifferentialAccessibleTiles(
# SampleTileObj = SampleTileMatrices,
# cellPopulation = cellPopulation,
# groupColumn = groupColumn,
# foreground = foreground,
# background = background,
# fdrToDisplay = fdrToDisplay,
# outputGRanges = outputGRanges,
# numCores = numCores
# )
#
# # The output contains a GRanges with all tiles and their differential
# # test results. We can filter by FDR to get our set of
# # differentially accessible tiles:
#
# res = head(plyranges::filter(differentials, seqnames =='chr4' & FDR < 0.2))
#
## -----------------------------------------------------------------------------
# regions = res$Tile
#
# # Alternatively, define regions as a character vector
# # of region strings in the format "chr:start-end"
# # regions <- c(
# # "chr4:7326500-7326999",
# # "chr4:7327000-7327499",
# # "chr4:7339500-7339999",
# # "chr4:7344500-7344999"
# # )
#
# links <- MOCHA::getCoAccessibleLinks(
# SampleTileObj = SampleTileMatrices,
# cellPopulation = cellPopulation,
# regions = regions,
# windowSize = 1 * 10^6,
# numCores = numCores,
# verbose = TRUE
# )
#
# # Optionally filter these links by their absolute
# # correlation - this output also adds the chromosome,
# # start, and end site of each link to the table.
#
# MOCHA::filterCoAccessibleLinks(links, threshold = 0.4)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.