Nothing
# TODO: common framework for glm.fit loops
# TODO: pass data in formula environment
BGWeights <-
function(object, ..., data, force.update = FALSE) {
models <- getModelArgs()
M <- length(models)
if(M < 2) stop("need more than one model")
checkIsModelDataIdentical(models)
no <- nrow(data)
k <- sample.int(no, floor(no / 2))
dat_train <- data[k, ]
dat_test <- data[-k, ]
# TODO: allow user to specify offset and weights
offset <- rep(0, no)
weights <- rep(1, no)
weights_train <- weights[k]
weights_test <- weights[-k]
offset_train <- offset[k]
offset_test <- offset[-k]
if(!force.update && all(vapply(models, inherits, FALSE, "glm"))) { # XXX: what about lm
# XXX: here 'offset_train' DOES include offset specified in 'formula'
py_test <- array(dim = c(nrow(dat_test), M))
for(i in seq.int(length(models))) {
fit <- models[[i]]
tf <- terms(fit)
fit_train <- update_glm_fit(fit, dat_train, weights_train, offset_train)
py_test[, i] <- predict_glm_fit(fit_train$coefficients, model.matrix(tf, dat_test),
offset = offset_test, family = family(fit))[, 1L]
}
} else { # for non-glm models, use update (2x slower)
if(any(!vapply(models, function(x) is.null(get_call(x)$offset), FALSE)))
stop("use of 'offset' argument in model calls is not allowed. ",
"Specify 'offset' term in the formula instead")
# NOTE: better to update in `parent.frame` because of possible masking
# of the variables in model's call by variables defined in this
# function. For example:
## fm <- glm(y ~ X1, data = Cement)
## (function(x) {
## Cement <- NA
## update(x) # Error
## })(fm)
## Even better is to provide all variables in environment(formula)
## and rename the formula variables
pf <- parent.frame()
z_data <- tmpvarname(pf)
z_weights <- tmpvarname(pf)
assign(z_data, dat_train, pf)
assign(z_weights, weights_train, pf)
on.exit(rm(list = c(z_data, z_weights), envir = pf, inherits = FALSE))
nz_data <- as.name(z_data)
nz_weights <- as.name(z_weights)
# XXX: here 'offset_train' DOES NOT include offset specified in 'formula'
py_test <- array(dim = c(nrow(dat_test), M))
for(i in seq.int(M)) {
cl <- get_call(models[[i]])
cl$data <- nz_data
cl$weights <- nz_weights
#print(cl)
py_test[, i] <- predict(eval(cl, pf), newdata = dat_test,
type = "response")
# XXX: weird behaviour of predict when offset= is given.
# prediction always has length of the offset. a bug in predict.glm?
#offset = `*tmp_dat*`[[3L]]),
}
# NOTE: No speed gain with *apply - more memory needed to store train_fits
## train_fits <- lapply(models, function(x) update(x, data = `*tmp_dat`[[1L]], weights = `*tmp_dat`[[2L]], offset = `*tmp_dat`[[3L]]))
## py_test <- vapply(train_fits, predict, numeric(nrow(dat_test)), newdata = dat_test, type = "response")
}
y_test <- get.response(models[[1L]], data = dat_test)
if(is.matrix(y_test)) y_test <- y_test[, 1L] / rowSums(y_test) # binomial
Sigma <- cov(y_test - py_test)
# XXX: I want do avoid dependency on MASS
#ginv <- if(use.MASS) getFrom("MASS", "ginv") else solve
ones <- rep(1, M)
#fn1 <- function(ones, Sigma, ginv) ginv(t(ones) %*% ginv(Sigma) %*% ones) %*% ones %*% ginv(Sigma)
fn1 <- function(ones, Sigma, ginv) ginv(crossprod(ones, ginv(Sigma)) %*% ones) %*% ones %*% ginv(Sigma)
rval <- tryCatch(fn1(ones, Sigma, solve), error = function(e) {
if(length(find.package("MASS", quiet = TRUE)) == 1L)
fn1(ones, Sigma, getFrom("MASS", "ginv")) else
stop(e)
})[1L, ]
structure(rval, wt.type = "Bates-Granger", names = names(models),
class = c("model.weights", class(rval)))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.