Nothing
nmareg <- function(x, z, treats){
xms <- x$measure
Z <- x$Z
covariate <- x$covariate
###
sz <- substitute(z)
z1 <- deparse(substitute(z))
z2 <- gsub(" ","",z1)
if(substring(z2,1,2)!="c(") covname <- z1
if(substring(z2,1,2)=="c("){
nz <- nchar(z2)
z3 <- substring(z2,3,(nz-1))
covname <- strsplit(z3,",")[[1]]
}
###
study <- x$study
treat <- x$treat
n <- x$n
###
study <- as.numeric(factor(study))
y <- x$y # Contrast-based statistics
S <- x$S
MY <- max(y,na.rm=TRUE) - min(y,na.rm=TRUE)
###
N <- dim(y)[1]
p <- max(treat) - 1
q1 <- length(covname)
c1 <- rep(NA,times=q1)
for(i in 1:q1) c1[i] <- which(covariate==covname[i])
Z1 <- data.frame(Z[,c1])
z1 <- numeric(N)
for(i in 1:N){
wi <- which(study==i)
z1[i] <- sum(Z1[wi,1]*n[wi])/sum(n[wi])
}
Z2 <- data.frame(z1)
if(q1>=2){
for(j in 2:q1){
z1 <- numeric(N)
for(i in 1:N){
wi <- which(study==i)
z1[i] <- sum(Z1[wi,j]*n[wi])/sum(n[wi])
}
Z2 <- data.frame(Z2,z1)
}
}
colnames(Z2) <- covname
###
X1 <- NULL
for(i in 1:p) X1[[i]] <- t(matrix(numeric(N) + 1))
for(i in 1:p) rownames(X1[[i]]) <- paste0(i+1,": cons")
###
C <- treats - 1
for(i in C){
X1[[i]] <- rbind(X1[[i]],t(Z2))
for(j in 1:q1) rownames(X1[[i]])[j+1] <- paste0(i+1,": ",covname[j])
}
####
vmat <- function(q2, p){
i1 <- 1; i2 <- p
Sg <- matrix(numeric(p*p),p,p)
for(i in 1:p){
Sg[i,(i:p)] <- q2[i1:i2]
i1 <- i2 + 1
i2 <- i2 + p - i
}
Sg <- Sg + t(Sg); diag(Sg) <- diag(Sg)/2
return(Sg)
}
cmat <- function(q2, p){
Sg <- q2*diag(p)
return(Sg)
}
pmat <- function(Si, wi){
pl <- length(wi)
R <- matrix(numeric(pl*pl),pl)
for(i in 1:pl){
for(j in 1:pl){
R[i,j] <- Si[wi[i],wi[j]]
}
}
return(R)
}
imat <- function(Si, wi, p){
pl <- length(wi)
R <- matrix(numeric(p*p),p)
for(i in 1:pl){
for(j in 1:pl){
R[wi[i],wi[j]] <- Si[i,j]
}
}
return(R)
}
ivec <- function(yi, wi, p){
pl <- length(wi)
R <- numeric(p)
for(i in 1:pl) R[wi[i]] <- yi[i]
return(R)
}
ivec2 <- function(yi, wi, p){
pl <- length(wi)
R <- rep(NA,times=p)
for(i in 1:pl) R[wi[i]] <- yi[i]
return(R)
}
gmat <- function(g1,g2,p){
G <- diag(0, p) + g2
diag(G) <- g1
return(G)
}
QT <- function(x,x0){
x1 <- sort(c(x,x0))
w1 <- which(x1==as.numeric(x0))
qt <- 1 - w1/(length(x)+1)
return(qt)
}
REMLIC <- function(y,S,X1,maxitr=200){
N <- dim(y)[1]
p <- dim(y)[2]
Q <- 0
for(i in 1:p) Q <- Q + dim(X1[[i]])[1]
Qp <- numeric(p)
for(i in 1:p) Qp[i] <- dim(X1[[i]])[1]
Qc2 <- cumsum(Qp)
Qc1 <- c(1,(Qc2[1:p-1]+1))
L1 <- Qc2 - Qc1 + 1
rnames <- rep(NA,times=Q)
for(i in 1:p) rnames[Qc1[i]:Qc2[i]] <- rownames(X1[[i]])
mu <- rnorm(Q) # initial values
g1 <- 0.2
g2 <- 0.1
Qc0 <- c(mu,g1,g2)
LL1 <- function(g){
#G <- gmat(g,g2,p)
G <- gmat(g,(g/2),p)
ll1 <- 0
for(i in 1:N){
yi <- as.vector(y[i,])
wi <- which(is.na(yi)==FALSE)
pl <- length(wi)
Si <- vmat(S[i,], p)
yi <- yi[wi]
Si <- pmat(Si,wi)
Gi <- pmat(G,wi)
mui <- rep(NA,times=pl)
for(k in 1:pl){
j <- wi[k]
qj <- Qc1[j]:Qc2[j]
muj <- mu[qj]
xj <- X1[[j]][,i]
mui[k] <- muj%*%xj
}
B1 <- (yi - mui)
B2 <- ginv2(Gi + Si)
A1 <- log(det(Gi + Si))
A2 <- t(B1) %*% B2 %*% B1
# A3 <- pl * log(2*pi)
ll1 <- ll1 + A1 + A2 # + A3
}
A1 <- numeric(Q)
A2 <- matrix(numeric(Q*Q),Q)
for(i in 1:N){
yi <- as.vector(y[i,])
wi <- which(is.na(yi)==FALSE)
pl <- length(wi)
Si <- vmat(S[i,], p)
yi <- yi[wi]
Si <- pmat(Si,wi)
Gi <- pmat(G,wi)
Wi <- ginv2(Gi + Si)
Xj <- NULL
for(k in 1:pl){
j <- wi[k]
if(k==1){
xj <- matrix(X1[[j]][,i])
Xj <- xj
}
if(k>=2){
xj <- matrix(X1[[j]][,i])
dimj <- dim(Xj)
qj <- length(xj)
B1 <- matrix(numeric(dimj[2]*qj),qj)
B2 <- matrix(numeric(dimj[1]))
B3 <- rbind(Xj,B1)
B4 <- rbind(B2,xj)
Xj <- cbind(B3,B4)
}
}
a1 <- t(yi) %*% Wi %*% t(Xj)
a2 <- Xj %*% Wi %*% t(Xj)
L2 <- L1[wi]
if(pl==1){
j <- wi
A2[Qc1[j]:Qc2[j],Qc1[j]:Qc2[j]] <- A2[Qc1[j]:Qc2[j],Qc1[j]:Qc2[j]] + a2
}
if(pl>=2){
L3 <- cumsum(L2)
L4 <- c(1,(L3[1:(pl-1)]+1))
for(k in 1:pl){
for(h in 1:pl){
j1 <- wi[k]
j2 <- wi[h]
wj1 <- Qc1[j1]:Qc2[j1]
wj2 <- Qc1[j2]:Qc2[j2]
uj1 <- L4[k]:L3[k]
uj2 <- L4[h]:L3[h]
A2[wj1,wj2] <- A2[wj1,wj2] + a2[uj1,uj2]
}
}
}
for(k in 1:pl){
j <- wi[k]
Lk <- L1[j]
A1[Qc1[j]:Qc2[j]] <- A1[Qc1[j]:Qc2[j]] + a1[1:Lk]
dim2 <- length(a1)
if(k!=pl){
a1 <- a1[(Lk+1):dim2]
}
}
}
ll1 <- ll1 + log(det(A2))
return(ll1)
}
for(itr in 1:maxitr){
A1 <- numeric(Q)
A2 <- matrix(numeric(Q*Q),Q)
G <- gmat(g1,g2,p)
for(i in 1:N){
yi <- as.vector(y[i,])
wi <- which(is.na(yi)==FALSE)
pl <- length(wi)
Si <- vmat(S[i,], p)
yi <- yi[wi]
Si <- pmat(Si,wi)
Gi <- pmat(G,wi)
Wi <- ginv2(Gi + Si)
Xj <- NULL
for(k in 1:pl){
j <- wi[k]
if(k==1){
xj <- matrix(X1[[j]][,i])
Xj <- xj
}
if(k>=2){
xj <- matrix(X1[[j]][,i])
dimj <- dim(Xj)
qj <- length(xj)
B1 <- matrix(numeric(dimj[2]*qj),qj)
B2 <- matrix(numeric(dimj[1]))
B3 <- rbind(Xj,B1)
B4 <- rbind(B2,xj)
Xj <- cbind(B3,B4)
}
}
a1 <- t(yi) %*% Wi %*% t(Xj)
a2 <- Xj %*% Wi %*% t(Xj)
L2 <- L1[wi]
if(pl==1){
j <- wi
A2[Qc1[j]:Qc2[j],Qc1[j]:Qc2[j]] <- A2[Qc1[j]:Qc2[j],Qc1[j]:Qc2[j]] + a2
}
if(pl>=2){
L3 <- cumsum(L2)
L4 <- c(1,(L3[1:(pl-1)]+1))
for(k in 1:pl){
for(h in 1:pl){
j1 <- wi[k]
j2 <- wi[h]
wj1 <- Qc1[j1]:Qc2[j1]
wj2 <- Qc1[j2]:Qc2[j2]
uj1 <- L4[k]:L3[k]
uj2 <- L4[h]:L3[h]
A2[wj1,wj2] <- A2[wj1,wj2] + a2[uj1,uj2]
}
}
}
for(k in 1:pl){
j <- wi[k]
Lk <- L1[j]
A1[Qc1[j]:Qc2[j]] <- A1[Qc1[j]:Qc2[j]] + a1[1:Lk]
dim2 <- length(a1)
if(k!=pl){
a1 <- a1[(Lk+1):dim2]
}
}
}
mu <- A1 %*% ginv2(A2)
g1 <- optimize(LL1, lower = 0, upper = MY)$minimum
g2 <- 0.5*g1
V.mu <- ginv2(A2)
Qc <- c(mu,g1,g2)
rb <- abs(Qc - Qc0)/abs(Qc0); rb[is.nan(rb)] <- 0
if(max(rb) < 10^-4) break
Qc0 <- Qc
}
SE <- sqrt(diag(V.mu))
R1 <- as.vector(mu)
R2 <- as.vector(SE)
R3 <- as.vector(mu - qnorm(.975)*SE)
R4 <- as.vector(mu + qnorm(.975)*SE)
P4 <- 2*(1-pnorm(abs(R1)/R2))
R5 <- cbind(R1,R2,R3,R4,P4); colnames(R5) <- c("Coef.","SE","95%CL","95%CU","P-value"); rownames(R5) <- rnames
R6 <- sqrt(g1)
R7 <- g2/g1
outcome <- paste0(treats," vs. 1")
R11 <- list("coding"=x$coding,"Covariates"=covname,"Outcomes evaluated the effect modifications"=outcome,"Coefficients"=R5,"Between-studies_SD"=R6,"Between-studies_COR"=R7)
return(R11)
}
C1 <- REMLIC(y,S,X1)
return(C1)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.