Nothing
#' @name plsim.vs.hard
#' @aliases plsim.vs.hard
#' @aliases plsim.vs.hard.formula
#' @aliases plsim.vs.hard.default
#' @aliases stepWise
#' @aliases dropOneVar
#' @aliases varSelCore
#' @aliases varSelCore.PPLSE
#' @aliases varSelCore.StepWise
#'
#' @title Variable Selection for Partial Linear Single Index Models
#' @description Variable Selection based on AIC, BIC, SCAD, LASSO and
#' Elastic Net. The methods based on SCAD, LASSO and Elastic Net are implemented with Penalized Profile
#' Least Squares Estimator, while AIC and BIC are implemented with Stepwise Regression.
#'
#' @usage plsim.vs.hard(\dots)
#'
#' \method{plsim.vs.hard}{formula}(formula, data, \dots)
#'
#' \method{plsim.vs.hard}{default}(xdat=NULL, zdat, ydat, h=NULL, zeta_i=NULL,
#' lambdaList=NULL, l1RatioList=NULL, lambda_selector="BIC", threshold=0.05,
#' Method="SCAD", verbose=TRUE, ParmaSelMethod="SimpleValidation", seed=0, \dots)
#'
#' @param formula a symbolic description of the model to be fitted.
#' @param data an optional data frame, list or environment containing the variables in the model.
#' @param xdat input matrix (linear covariates). The model reduces to a single index model when \code{x} is NULL.
#' @param zdat input matrix (nonlinear covariates). \code{z} should not be NULL.
#' @param ydat input vector (response variable).
#' @param h a numerical value or a vector for bandwidth. If \code{h} is NULL, a default vector c(0.01,0.02,0.05,0.1,0.5)
#' will be set for it. \link{plsim.bw} is employed to select the optimal bandwidth when h is a vector or NULL.
#' @param zeta_i initial coefficients, optional (default: NULL). It could be obtained by the function \code{\link{plsim.ini}}.
#' \code{zeta_i[1:ncol(z)]} is the initial coefficient vector \eqn{\alpha_0},
#' and \code{zeta_i[(ncol(z)+1):(ncol(z)+ncol(x))]} is the initial coefficient vector \eqn{\beta_0}.
#' @param verbose bool, default: TRUE. Enable verbose output.
#' @param Method variable selection method, default: "SCAD". It could be "SCAD", "LASSO", "ElasticNet", "AIC" or "BIC".
#' @param lambdaList the parameter for the function \link{plsim.lam}, default: "NULL".
#' @param l1RatioList the parameter for the function \link{plsim.lam}, default: "NULL".
#' @param lambda_selector the parameter for the function \link{plsim.lam}, default: "BIC".
#' @param threshold the threshold to select important variable according to the estimated coefficients.
#' @param ParmaSelMethod the parameter for the function \link{plsim.bw}.
#' @param seed int, default: 0.
#' @param \dots additional arguments.
#'
#' @return
#' \item{alpha_varSel}{selected variables in \code{z}.}
#' \item{beta_varSel}{selected variables in \code{x}.}
#' \item{fit_plsimest}{\code{fit_plsimest} is not NULL when \code{h} is a vector or NULL.
#' For each bandwidth, \link{plsim.est} is employed to integrate selected variabels. Finally, the optimal
#' fitted model will be selected according to BIC.}
#'
#' @export
#'
#' @examples
#'
#' # EXAMPLE 1 (INTERFACE=FORMULA)
#' # To select variables with Penalized Profile Least Squares Estimation based on
#' # the penalty LASSO.
#'
#' n = 50
#' dx = 10
#' dz = 5
#' sigma = 0.2
#' alpha = matrix(c(1,3,1.5,0.5,0),dz,1)
#' alpha = alpha/norm(alpha,"2")
#' beta = matrix(c(3,2,0,0,0,1.5,0,0.2,0.3,0.15),dx,1)
#'
#' A = sqrt(3)/2-1.645/sqrt(12)
#' B = sqrt(3)/2+1.645/sqrt(12)
#' z = matrix(runif(n*dz),n,dz)
#' x = matrix(runif(n*dx),n,dx)
#' y = sin( (z%*%alpha - A) * 3.1415926 * (B-A) ) + x%*%beta + sigma*matrix(rnorm(n),n,1)
#'
#' # Variable Selectioin Based on LASSO
#' res_varSel_LASSO = plsim.vs.hard(y~x|z,h=0.1,Method="LASSO")
#'
#'
#' # EXAMPLE 2 (INTERFACE=DATA FRAME)
#' # To select variables with Penalized Profile Least Squares Estimation based on
#' # the penalty LASSO.
#'
#' n = 50
#' dx = 10
#' dz = 5
#' sigma = 0.2
#' alpha = matrix(c(1,3,1.5,0.5,0),dz,1)
#' alpha = alpha/norm(alpha,"2")
#' beta = matrix(c(3,2,0,0,0,1.5,0,0.2,0.3,0.15),dx,1)
#'
#' A = sqrt(3)/2-1.645/sqrt(12)
#' B = sqrt(3)/2+1.645/sqrt(12)
#' z = matrix(runif(n*dz),n,dz)
#' x = matrix(runif(n*dx),n,dx)
#' y = sin( (z%*%alpha - A) * 3.1415926 * (B-A) ) + x%*%beta + sigma*matrix(rnorm(n),n,1)
#'
#' Z = data.frame(z)
#' X = data.frame(x)
#'
#' # Variable Selectioin Based on LASSO
#' res_varSel_LASSO = plsim.vs.hard(xdat=X,zdat=Z,ydat=y,h=0.1,Method="LASSO")
#'
plsim.vs.hard = function(...)
{
UseMethod("plsim.vs.hard")
}
plsim.vs.hard.formula = function(formula,data,...)
{
mf = match.call(expand.dots = FALSE)
m = match(c("formula","data"),
names(mf), nomatch = 0)
mf = mf[c(1,m)]
mf.xf = mf
mf[[1]] = as.name("model.frame")
mf.xf[[1]] = as.name("model.frame")
chromoly = deal_formula(mf[["formula"]])
if (length(chromoly) != 3)
stop("Invoked with improper formula, please see plsim.est documentation for proper use")
bronze = lapply(chromoly, paste, collapse = " + ")
mf.xf[["formula"]] = as.formula(paste(" ~ ", bronze[[2]]),
env = environment(formula))
mf[["formula"]] = as.formula(paste(bronze[[1]]," ~ ", bronze[[3]]),
env = environment(formula))
formula.all = terms(as.formula(paste(" ~ ",bronze[[1]]," + ",bronze[[2]], " + ",bronze[[3]]),
env = environment(formula)))
orig.class = if (missing(data))
sapply(eval(attr(formula.all, "variables"), environment(formula.all)),class)
else sapply(eval(attr(formula.all, "variables"), data, environment(formula.all)),class)
arguments.mfx = chromoly[[2]]
arguments.mf = c(chromoly[[1]],chromoly[[3]])
mf[["formula"]] = terms(mf[["formula"]])
mf.xf[["formula"]] = terms(mf.xf[["formula"]])
mf = tryCatch({
eval(mf,parent.frame())
},error = function(e){
NULL
})
temp = map_lgl(mf , ~is.factor(.x))
if(sum(temp)>0){
stop("Categorical variables are not allowed in Z or Y")
}
mf.xf = tryCatch({
eval(mf.xf,parent.frame())
},error = function(e){
NULL
})
mt <- attr(mf.xf, "terms")
if(is.null(mf)){
stop("Z should not be NULL")
}
else{
ydat = model.response(mf)
}
if(!is.null(mf.xf))
{
xdat = model.matrix(mt, mf.xf, NULL)
xdat = as.matrix(xdat[,2:dim(xdat)[2]])
}else{
xdat = mf.xf
}
zdat = mf[, chromoly[[3]], drop = FALSE]
ydat = data.matrix(ydat)
if(!is.null(xdat) & is.null(dim(xdat[,1]))){
xdat = data.matrix(xdat)
}
else if(!is.null(dim(xdat[,1]))){
xdat = xdat[,1]
}
if(is.null(dim(zdat[,1]))){
zdat = data.matrix(zdat)
}
else{
zdat = zdat[,1]
}
res = plsim.vs.hard(xdat = xdat, zdat = zdat, ydat = ydat, ...)
return(res)
}
plsim.vs.hard.default = function(xdat=NULL,zdat,ydat,h=NULL,zeta_i=NULL,lambdaList=NULL,
l1RatioList=NULL,lambda_selector="BIC",threshold=0.05,
Method="SCAD",verbose=TRUE,ParmaSelMethod="SimpleValidation",seed=0,...)
{
n = nrow(ydat)
data = list(x=xdat,y=ydat,z=zdat)
x = data$x
y = data$y
z = data$z
.assertion_for_variables(data)
tempz = map_lgl(z , ~is.factor(.x))
tempy = map_lgl(y , ~is.factor(.x))
if((sum(tempz)>0)|(sum(tempy)>0)){
stop("Categorical variables are not allowed in Z or Y")
}
if(!is.null(x)){
x = model.matrix(~., as.data.frame(x))
x = as.matrix(x[,2:dim(x)[2]])
}
if(is.data.frame(x))
x = data.matrix(x)
if(is.data.frame(z))
z = data.matrix(z)
if(is.data.frame(y))
y = data.matrix(y)
if(is.null(zeta_i))
{
if(verbose) zeta_i = plsim.ini(x,z,y,verbose=verbose)
}
if(Method %in% c('SCAD','LASSO','ElasticNet') )
{
class(data) = 'PPLSE'
}
else if(Method %in% c('AIC','BIC') )
{
class(data) = 'StepWise'
}
else
{
Method = "SCAD"
class(data) = 'PPLSE'
}
if( !is.null(h) & length(h)==1 )
{
res = varSelCore(data,h,zeta_i,verbose,lambdaList,l1RatioList,
lambda_selector,threshold,Method,flag=FALSE,ParmaSelMethod,seed)
}
else if( is.vector(h) & length(h) > 1 )
{
hVec = h
BIC_best = 1000
res = NULL
for(j in 1:length(hVec))
{
if(verbose)
{
cat(paste("\n----------Variable Selection when h=",
as.character(hVec[j]),"----------\n\n",sep=""))
}
res_tmp = varSelCore(data,hVec[j],zeta_i,verbose,lambdaList,l1RatioList,
lambda_selector,threshold,Method,flag = TRUE,ParmaSelMethod,seed)
if(verbose)
{
cat( paste("BIC: ",as.character(res_tmp$fit_plsimest$BIC),"\n", sep=""))
}
if(res_tmp$fit_plsimest$BIC < BIC_best)
{
res = res_tmp
BIC_best = res_tmp$fit_plsimest$BIC
}
}
}
else if( is.null(h) )
{
hVec = seq(0.1/sqrt(n),2*sqrt(log(n)/n),length=20)
BIC_best = 1000
res = NULL
for(j in 1:length(hVec))
{
if(verbose)
{
cat(paste("\n----------Variable Selection when h=",
as.character(hVec[j]),"----------\n\n"), sep="")
}
res_tmp = varSelCore(data,hVec[j],zeta_i,verbose,lambdaList,l1RatioList,
lambda_selector,threshold,Method,flag = TRUE,ParmaSelMethod,seed)
if(is.null(res_tmp))
return(NULL)
if(verbose)
{
cat( paste(" BIC: ",as.character(res_tmp$fit_plsimest$BIC),sep=""))
cat("\n")
}
if(res_tmp$fit_plsimest$BIC < BIC_best)
{
res = res_tmp
BIC_best = res_tmp$fit_plsimest$BIC
}
}
}
return(res)
}
varSelCore=function(data,h,zeta_i,verbose,lambdaList,l1RatioList,
lambda_selector,threshold,Method,flag,ParmaSelMethod,seed)
{
UseMethod("varSelCore")
}
varSelCore.PPLSE=function(data,h,zeta_i,verbose,lambdaList,l1RatioList,
lambda_selector,threshold,Method,flag,ParmaSelMethod,seed)
{
x = data$x
z = data$z
y = data$y
n = nrow(y)
if(is.null(x))
{
dx = 0
}
else
{
dx = ncol(x)
}
dz = ncol(z)
res = plsim.lam(x,y,z,h,zeta_i,Method,lambdaList,l1RatioList,lambda_selector,verbose,seed)
if(is.null(res))
return(NULL)
plsim_result = plsim.vs.soft(x,z,y,h,zeta_i,res$lambda_best,l1RatioList,1,Method,verbose,ParmaSelMethod,seed=seed)
if(is.null(plsim_result))
return(NULL)
alpha = plsim_result$zeta[1:dz]
if(!is.null(x))
{
beta = plsim_result$zeta[(dz+1):(dz+dx)]
}
alpha_norm = abs(alpha)/max(abs(alpha))
if(!is.null(x))
{
beta_norm = abs(beta)/max(abs(beta))
}
alpha_eliminated = which(alpha_norm<threshold)
if(!is.null(x))
{
beta_eliminated = which(beta_norm<threshold)
}
res_alpha_sorted = sort.int(alpha_norm,index.return = TRUE,decreasing = TRUE)
if(!is.null(x))
{
res_beta_sorted = sort.int(beta_norm,index.return = TRUE,decreasing = TRUE)
}
alpha_varSel = setdiff(res_alpha_sorted$ix,alpha_eliminated)
if(!is.null(x))
{
beta_varSel = setdiff(res_beta_sorted$ix,beta_eliminated)
}
if(verbose)
{
cat(paste("\n Important varaibles in Z are",
paste(alpha_varSel,collapse = ","),sep = ": "))
}
if(!is.null(x))
{
if( length(beta_varSel) > 0 )
{
if(verbose)
{
cat(paste("\n Important varaibles in X are",
paste(beta_varSel,collapse = ","),sep = ": "))
}
}
}
if(verbose) cat("\n")
if(!is.null(x))
{
result = list(alpha_varSel=alpha_varSel,beta_varSel=beta_varSel)
}
else
{
result = list(alpha_varSel=alpha_varSel)
}
if(flag)
{
if(is.null(x))
{
x_vs = NULL
}
else
{
if(length(beta_varSel) > 1)
{
x_vs = x[,beta_varSel]
}
else if(length(beta_varSel) == 1)
{
x_vs = matrix(x[,beta_varSel])
}
else
{
x_vs = NULL
}
}
if(length(alpha_varSel) > 1)
{
z_vs = z[,alpha_varSel]
}
else if( length(alpha_varSel) == 1)
{
z_vs = matrix(z[,alpha_varSel])
}
else
{
z_vs = NULL
}
fit_plsimest = plsim.est(x_vs, z_vs, y, ParmaSelMethod = ParmaSelMethod,
seed=seed,verbose=verbose)
if( !is.null(fit_plsimest))
{
fit_plsimest$BIC = .IC(fit_plsimest$mse,sum(fit_plsimest$zeta!=0),n,"BIC")
result$fit_plsimest = fit_plsimest
}
else
{
fit_plsimest = list(BIC=10000)
result$fit_plsimest = fit_plsimest
}
}
return(result)
}
varSelCore.StepWise=function(data,h,zeta_i,verbose,lambdaList,l1RatioList,
lambda_selector,threshold,Method,flag,ParmaSelMethod,seed)
{
x = data$x
z = data$z
y = data$y
n = nrow(y)
if(is.null(x))
{
dx = 0
}
else
{
dx = ncol(x)
colnames(x) = 1:dx
}
dz = ncol(z)
colnames(z) = 1:dz
res = stepWise(data,h,zeta_i,Method,seed,verbose)
if(flag)
{
if(is.null(x))
{
x_vs = NULL
}
else
{
if(length(res$beta_varSel) > 1)
{
x_vs = x[,res$beta_varSel]
}
else
{
x_vs = matrix(x[,res$beta_varSel])
}
}
if(length(res$alpha_varSel) > 1)
{
z_vs = z[,res$alpha_varSel]
}
else
{
z_vs = matrix(z[,res$alpha_varSel])
}
fit_plsimest = plsim.est(x_vs, z_vs, y,seed=seed)
fit_plsimest$BIC = .IC(fit_plsimest$mse,sum(fit_plsimest$zeta!=0),n,"BIC")
res$fit_plsimest = fit_plsimest
}
return(res)
}
stepWise=function(data,h,zeta_i,Method="BIC",seed,verbose)
{
x = data$x
z = data$z
y = data$y
n = nrow(y)
if(is.null(x))
{
dx = 0
}
else
{
dx = ncol(x)
}
dz = ncol(z)
if(!is.null(x))
{
colnames(x) = 1:dx
}
colnames(z) = 1:dz
res = plsim.est(x,z,y,h,zeta_i,seed=seed)
zeta = res$zeta
mse = res$mse
df = sum(zeta!=0)
IC_all = .IC(mse,df,n,Method)
while (TRUE)
{
res = dropOneVar(x,y,z,h,zeta_i,Method,seed)
IC_tmp = res$IC
Component = res$Component
Idx = res$Idx
if(IC_tmp < IC_all)
{
IC_all = IC_tmp
if(Component == "X")
{
if(ncol(x) == 1)
{
x = NULL
}
else if(ncol(x) == 2)
{
x = matrix(x[,-Idx])
}
else
{
x = x[,-Idx]
}
zeta_i = zeta_i[-(ncol(z)+Idx)]
}
else
{
if(ncol(z) == 2)
{
z = matrix(z[,-Idx])
}
else
{
z = z[,-Idx]
}
zeta_i = zeta_i[-Idx]
}
}
else
{
break
}
if(!is.null(x))
{
if(verbose)
{
cat('\nSelected X:')
cat(paste(colnames(x),collapse = ','))
cat('\n')
}
}
if(verbose)
{
cat('\nSelected Z:')
cat(paste(colnames(z),collapse = ','))
cat('\n\n')
}
}
result = list()
if(!is.null(x))
{
result$beta_varSel = colnames(x)
}
result$alpha_varSel = colnames(z)
return(result)
}
dropOneVar=function(x,y,z,h,zeta_i,Method="BIC",seed)
{
n = nrow(y)
dz = ncol(z)
if(is.null(x))
{
dx = 0
}
else
{
dx = ncol(x)
}
X_IC_list = c()
i = 1
while( i <= dx )
{
if(dx == 1)
{
x_tmp = NULL
}
if(dx == 2)
{
x_tmp = matrix(x[,-i])
}
else
{
x_tmp = x[,-i]
}
zeta_tmp = zeta_i[-(dz+i)]
res = plsim.est(x_tmp,z,y,h,zeta_tmp,seed=seed)
zeta = res$zeta
mse = res$mse
df = sum(zeta!=0)
X_IC_list[i] = .IC(mse,df,n,Method)
i = i + 1
}
if(!is.null(x))
{
X_IC_min = min(X_IC_list)
X_IC_min_Idx = which.min(X_IC_list)
}
else
{
X_IC_min = 10000
}
Z_IC_list = c()
i = 1
while( (i <= dz) & (dz > 1) )
{
if(dz == 2)
{
z_tmp = matrix(z[,-i])
}
else
{
z_tmp = z[,-i]
}
zeta_tmp = zeta_i[-i]
res = plsim.est(x,z_tmp,y,h,zeta_tmp,seed=seed)
zeta = res$zeta
mse = res$mse
df = sum(zeta!=0)
Z_IC_list[i] = .IC(mse,df,n,Method)
i = i + 1
}
Z_IC_min = min(Z_IC_list)
Z_IC_min_Idx = which.min(Z_IC_list)
result = list()
if(X_IC_min < Z_IC_min)
{
result$IC = X_IC_min
result$Component = "X"
result$Idx = X_IC_min_Idx
}
else
{
result$IC = Z_IC_min
result$Component = "Z"
result$Idx = Z_IC_min_Idx
}
return(result)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.