Nothing
#' Exact Confidence interval for Binary Proportion
#'
#' This function calculates the exact confidendence interval for a
#' response rate presented by \eqn{n} and \eqn{r}.
#'
#' @param r Number of success or responder
#' @param n Sample size
#' @param alpha confidence level
#' @param drop Determines if [drop()] will be called on the result
#'
#' @details
#' Confidence intervals are obtained by a procedure first given in
#' Clopper and Pearson (1934). This guarantees that the confidence
#' level is at least (1-\eqn{\alpha}).
#'
#' Details can be found in the publication listed below.
#'
#' @return 100 (1-\eqn{\alpha})\% exact confidence interval for given
#' response rate
#'
#' @references Clopper, C. J. & Pearson, E. S. The use of confidence or
#' fiducial limits illustrated in the case of the binomial. Biometrika 1934.
#'
#' @examples
#' BinaryExactCI(3, 20, 0.05)
#'
#' @export
BinaryExactCI <- function(r, n, alpha = 0.05, drop = TRUE) {
alpha2 <- alpha / 2
Low <- alpha2
High <- 1 - alpha2
pLow <- qbeta(Low, r, n - r + 1)
pHigh <- qbeta(High, r + 1, n - r)
nms <- c(
paste(round(100 * Low, 1), "%", sep = ""),
paste(round(100 * High, 1), "%", sep = "")
)
CI <- cbind(pLow, pHigh)
colnames(CI) <- nms
if (drop) CI <- drop(CI)
return(CI)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.