Nothing
# Other checking functions
#-----------------------------
check_blockx <- function(x, y, blocks) {
message <- paste0(
x, " must be lower than the number of blocks, i.e. ",
length(blocks), "."
)
exit_code <- 133
x <- check_integer(x, y,
max = length(blocks), exit_code = exit_code,
max_message = message
)
return(x)
}
check_boolean <- function(x, y = x, type = "scalar") {
if (any(is.na(y))) {
stop_rgcca(x, " must not be NA.")
}
if (!is(y, "logical")) {
stop_rgcca(x, " must be TRUE or FALSE.")
}
if (type == "scalar" && length(y) != 1) {
stop_rgcca(x, " must be of length 1.")
}
}
check_colors <- function(colors, type = "variables") {
if (is.null(colors)) {
switch(type,
"variables" = colors <- c(
"#882255", "#1FB0B5", "#C79E46", "#117733",
"#332288", "#BB728E", "#1F9F76", "#A95700"
),
"samples" = colors <- c(
"#1F6EE0", "#CC0000", "#029B38", "#FFC709",
"#34C926", "#88AEC1", "#990099", "#FB176C"
),
"AVE" = colors <- c(
"#828076", "#959685", "#A4AC96", "#AEB998",
"#B7C69A", "#CADF9E", "#DCF1AE", "#E7F8C4"
)
)
} else {
colors <- as.vector(colors)
lapply(colors, function(i) {
if (!is.na(i) && !(i %in% colors()) && is.character(i) &&
regexpr("^#{1}[a-zA-Z0-9]{6,8}$", i) < 1) {
stop_rgcca(
"Unrecognized colors. Colors must be in colors() ",
"or a rgb character."
)
}
})
}
return(colors)
}
check_compx <- function(x, y, ncomp, blockx) {
res <- check_integer(x, y, min = 1)
if (y > ncomp[blockx]) {
stop_rgcca("not existing component. Trying to extract component ", y,
" for block ", blockx, " , but only ", ncomp[blockx],
" component(s) are available for this block.",
exit_code = 128
)
}
return(res)
}
# Check the format of the connection matrix
check_connection <- function(C, blocks) {
msg <- "connection matrix C must"
if (!is.matrix(C)) stop_rgcca(msg, " be a matrix.", exit_code = 103)
if (!isSymmetric.matrix(unname(C))) {
stop_rgcca(paste(msg, "be symmetric."), exit_code = 103)
}
if (any(is.na(C))) {
stop_rgcca(paste(msg, "not contain NA values."), exit_code = 106)
}
x <- C >= 0 & C <= 1
if (sum(!x) != 0) {
stop_rgcca(paste(msg, "contain numbers between 0 and 1."), exit_code = 106)
}
if (all(C == 0)) {
stop_rgcca(paste(msg, "not contain only 0."), exit_code = 107)
}
invisible(check_size_blocks(blocks, "connection matrix", C))
if (is.null(rownames(C)) || is.null(colnames(C))) {
rownames(C) <- colnames(C) <- names(blocks)
}
if (!all(rownames(C) %in% names(blocks)) ||
!all(colnames(C) %in% names(blocks))) {
stop_rgcca(paste(
msg,
"have the rownames and the colnames that match with",
"the names of the blocks."
),
exit_code = 108
)
}
return(C)
}
check_integer <- function(x, y = x, type = "scalar", float = FALSE, min = 1,
max = Inf, max_message = NULL, exit_code = NULL,
min_message = NULL) {
if (type %in% c("matrix", "data.frame")) {
y_temp <- y
}
y <- tryCatch(
as.double(as.matrix(y)),
warning = function(w) {
stop_rgcca(paste(x, "must be numeric."))
}
)
if (any(is.na(y))) {
stop_rgcca(paste(x, "must not be NA."))
}
if (type == "scalar" && length(y) != 1) {
stop_rgcca(paste(x, "must be of length 1."))
}
if (!float) {
if (any((y %% 1) != 0)) {
stop_rgcca(paste(x, "must be an integer."))
}
y <- as.integer(y)
}
if (any(y < min)) {
if (!is.null(min_message)) {
stop_rgcca(min_message, exit_code = exit_code)
} else {
stop_rgcca(x, " must be higher than or equal to ", min, ".",
exit_code = exit_code
)
}
}
if (any(y > max)) {
if (!is.null(max_message)) {
stop_rgcca(max_message, exit_code = exit_code)
} else {
stop_rgcca(x, " must be lower than or equal to ", max, ".",
exit_code = exit_code
)
}
}
if (type %in% c("matrix", "data.frame")) {
y <- matrix(
y,
NROW(y_temp),
NCOL(y_temp),
dimnames = dimnames(y_temp)
)
}
if (type == "data.frame") {
y <- as.data.frame(y)
}
return(y)
}
check_method <- function(method) {
if (!method %in% available_methods()) {
stop_rgcca(
"method '", method, "' is not among the available methods: ",
paste(available_methods(), collapse = "', '"), "'.",
exit_code = 112
)
}
return(method)
}
check_nblocks <- function(blocks, method) {
if (tolower(method) %in% one_block_methods()) {
if (length(blocks) == 1) {
return(blocks)
}
nb <- 1
exit_code <- 110
} else {
if (length(blocks) == 2) {
return(blocks)
}
nb <- 2
exit_code <- 111
}
stop_rgcca(
length(blocks),
" blocks were provided but the number of blocks for ", method,
" must be ", nb, ".",
exit_code = exit_code
)
}
check_ncomp <- function(ncomp, blocks, min = 1, superblock = FALSE,
response = NULL) {
if (superblock) {
if (length(unique(ncomp)) != 1) {
stop_rgcca(
"only one number of components must be specified (superblock)."
)
}
max_ncomp <- ifelse(
"superblock" %in% names(blocks),
NCOL(blocks[[length(blocks)]]),
sum(vapply(blocks, NCOL, FUN.VALUE = integer(1)))
)
msg <- paste0(
"the number of components must be lower than the number of ",
"variables in the superblock, i.e. ", max_ncomp,
"."
)
y <- check_integer("ncomp", ncomp[1],
min = min, max_message = msg,
max = max_ncomp,
exit_code = 126
)
return(rep(y, length(ncomp)))
}
ncomp <- elongate_arg(ncomp, blocks)
check_size_blocks(blocks, "ncomp", ncomp)
ncomp <- vapply(
seq_along(ncomp),
function(x) {
if (!is.null(response) && x == response) {
y <- check_integer("ncomp", ncomp[x], min = min, exit_code = 126)
} else {
msg <- paste0(
"ncomp[", x, "] must be lower than the number of variables ",
"for block ", x, ", i.e. ", NCOL(blocks[[x]]), "."
)
y <- check_integer("ncomp", ncomp[x],
min = min, max_message = msg,
max = NCOL(blocks[[x]]), exit_code = 126
)
}
return(y)
},
FUN.VALUE = integer(1)
)
return(ncomp)
}
# Test on the sign of the correlation
check_sign_comp <- function(rgcca_res, w) {
y <- lapply(
seq_along(rgcca_res$a),
function(i) pm(rgcca_res$blocks[[i]], w[[i]])
)
w <- lapply(setNames(seq_along(w), names(w)), function(i) {
if (NROW(w[[i]]) < NROW(y[[i]])) {
res <- as.matrix(cor2(rgcca_res$Y[[i]], y[[i]]))
} else {
res <- as.matrix(cor2(rgcca_res$a[[i]], w[[i]]))
}
vec_sign <- vapply(diag(res), function(x) {
return(ifelse(!is.na(x) && (x < 0), -1, 1))
}, double(1))
return(pm(w[[i]], diag(vec_sign, nrow = nrow(res))))
})
return(w)
}
check_size_blocks <- function(blocks, x, y = x, n_row = NULL,
superblock = FALSE) {
if (any(class(y) %in% c("matrix", "data.frame"))) {
dim_y <- NCOL(y)
dim_type <- "number of columns"
if (!is.null(n_row) && (NROW(y) != n_row) && (NROW(y) != 1)) {
stop_rgcca(x, " must have ", n_row, " rows.")
}
} else {
dim_y <- length(y)
dim_type <- "size"
}
if (dim_y != length(blocks)) {
superblock_msg <- ifelse(superblock, paste0(
" or the number of blocks + 1 (", length(blocks) + 1, ")"
), "")
message <- paste0(
x,
" must have the same ",
dim_type,
" (actually ",
dim_y,
") as the number of blocks (",
length(blocks),
")", superblock_msg, "."
)
stop_rgcca(message, exit_code = 130
)
} else {
return(TRUE)
}
}
check_penalty <- function(penalty, blocks, method = "rgcca", superblock = FALSE,
ncomp = NULL) {
penalty <- elongate_arg(penalty, blocks)
is_matrix <- is.matrix(penalty)
DIM <- dim(penalty)
size <- ifelse(is_matrix, NCOL(penalty), NROW(penalty))
if (superblock && (size == (length(blocks) + 1))) {
blocks[[length(blocks) + 1]] <- Reduce(cbind, blocks)
names(blocks)[length(blocks)] <- "superblock"
}
name <- ifelse(method == "rgcca", "tau", "sparsity")
check_size_blocks(blocks, name, penalty,
n_row = ncomp, superblock = superblock)
# Check value of each penalty
if (method == "rgcca") {
penalty <- unlist(lapply(penalty, check_tau))
}
if (method == "sgcca") {
divider <- ifelse(is_matrix, DIM[1], 1)
penalty <- vapply(
seq_along(penalty),
function(x) {
n <- 1 + (x - 1) / divider
check_spars(penalty[x], blocks[[n]], n)
},
FUN.VALUE = double(1L)
)
}
if (is_matrix) penalty <- matrix(penalty, DIM[1], DIM[2])
return(penalty)
}
check_spars <- function(sparsity, block, n) {
if (mode(block) == "character") {
return(sparsity)
}
min_sparsity <- 1 / sqrt(NCOL(block))
min_message <- paste0(
"too low sparsity. Sparsity parameter equals ", sparsity,
". For SGCCA, it must be greater than ",
"1/sqrt(number_column) (i.e., ", round(min_sparsity, 4),
" for block ", n, ")."
)
sparsity <- check_integer("sparsity", sparsity,
float = TRUE,
min = min_sparsity, max = 1, min_message = min_message
)
invisible(sparsity)
}
check_tau <- function(tau) {
if (is.na(tau) || tau != "optimal") {
tau <- check_integer("tau", tau, float = TRUE, min = 0, max = 1)
}
invisible(tau)
}
check_scheme <- function(scheme) {
if (mode(scheme) != "function") {
scheme <- tolower(scheme)
if (!scheme %in% c("horst", "factorial", "centroid")) {
stop_rgcca(paste0(
"scheme must be one of the following schemes: 'horst', ",
"'centroid', 'factorial' or a function."
))
}
}
return(scheme)
}
check_prediction_model <- function(prediction_model, response_block,
missing_model = FALSE) {
classification <-
is.factor(response_block) || is.character(response_block)
if (missing_model && classification) {
prediction_model <- "lda"
}
if (is.list(prediction_model)) {
model_info <- prediction_model
} else {
model_info <- caret::getModelInfo(prediction_model, regex = FALSE)[[1]]
if (is.null(model_info)) {
stop_rgcca(
"unknown model. Model ", prediction_model, " is not handled, please ",
"see caret::modelLookup() for a list of the available models."
)
}
}
is_inadequate <- !("Classification" %in% model_info$type) && classification
if (is_inadequate) {
stop_rgcca(
"inadequate model. Response block contains categorical data ",
"but model ", prediction_model, " is not made for ",
"classification. Please choose another model."
)
}
is_inadequate <- !("Regression" %in% model_info$type) && !classification
if (is_inadequate) {
stop_rgcca(
"inadequate model. Response block contains continuous data ",
"but model ", prediction_model, " is not made for ",
"regression Please choose another model."
)
}
return(list(prediction_model = model_info, classification = classification,
model_name = prediction_model))
}
check_char <- function(arg, name_arg, values) {
res <- grep(arg, values, fixed = TRUE, value = TRUE)
if (length(res) == 0) {
stop_rgcca(
"'", name_arg, "' should be one of \"",
paste(values, collapse = "\", \""), "\""
)
} else {
return(res[1])
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.