GANN_C | R Documentation |
GANN_C Classification Algorithm from KEEL.
GANN_C(train, test, hidden_layers, hidden_nodes, transfer, eta,
alpha, lambda, test_data, validation_data, cross_validation,
BP_cycles, improve, tipify_inputs, save_all, elite,
num_individuals, w_range, connectivity, P_bp, P_param,
P_struct, max_generations, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
hidden_layers |
hidden_layers. Default value = 2 |
hidden_nodes |
hidden_nodes. Default value = 15 |
transfer |
transfer. Default value = "Htan" |
eta |
eta. Default value = 0.15 |
alpha |
alpha. Default value = 0.1 |
lambda |
lambda. Default value = 0.0 |
test_data |
test_data. Default value = TRUE |
validation_data |
validation_data. Default value = FALSE |
cross_validation |
cross_validation. Default value = FALSE |
BP_cycles |
BP_cycles. Default value = 10000 |
improve |
improve. Default value = 0.01 |
tipify_inputs |
tipify_inputs. Default value = TRUE |
save_all |
save_all. Default value = FALSE |
elite |
elite. Default value = 0.1 |
num_individuals |
num_individuals. Default value = 100 |
w_range |
w_range. Default value = 5.0 |
connectivity |
connectivity. Default value = 0.5 |
P_bp |
P_bp. Default value = 0.25 |
P_param |
P_param. Default value = 0.1 |
P_struct |
P_struct. Default value = 0.1 |
max_generations |
max_generations. Default value = 100 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::GANN_C(data_train, data_test, hidden_layers=1,
hidden_nodes=5, max_generations=5)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.