GFS_GP_R | R Documentation |
GFS_GP_R Regression Algorithm from KEEL.
GFS_GP_R(train, test, numLabels, numRules, popSize, numisland,
steady, numIter, tourSize, mutProb, aplMut, probMigra,
probOptimLocal, numOptimLocal, idOptimLocal, nichinggap,
maxindniche, probintraniche, probcrossga, probmutaga,
lenchaingap, maxtreeheight, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
numLabels |
numLabels. Default value = 3 |
numRules |
numRules. Default value = 8 |
popSize |
popSize. Default value = 30 |
numisland |
numisland. Default value = 2 |
steady |
steady. Default value = 1 |
numIter |
numIter. Default value = 100 |
tourSize |
tourSize. Default value = 4 |
mutProb |
mutProb. Default value = 0.01 |
aplMut |
aplMut. Default value = 0.1 |
probMigra |
probMigra. Default value = 0.001 |
probOptimLocal |
probOptimLocal. Default value = 0.00 |
numOptimLocal |
numOptimLocal. Default value = 0 |
idOptimLocal |
idOptimLocal. Default value = 0 |
nichinggap |
nichinggap. Default value = 0 |
maxindniche |
maxindniche. Default value = 8 |
probintraniche |
probintraniche. Default value = 0.75 |
probcrossga |
probcrossga. Default value = 0.5 |
probmutaga |
probmutaga. Default value = 0.5 |
lenchaingap |
lenchaingap. Default value = 10 |
maxtreeheight |
maxtreeheight. Default value = 8 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted values for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("autoMPG6_train")
data_test <- RKEEL::loadKeelDataset("autoMPG6_test")
#Create algorithm
algorithm <- RKEEL::GFS_GP_R(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.