GFS_GSP_R | R Documentation |
GFS_GSP_R Regression Algorithm from KEEL.
GFS_GSP_R(train, test, numLabels, numRules, deltafitsap,
p0sap, p1sap, amplMut, nsubsap, probOptimLocal,
numOptimLocal, idOptimLocal, probcrossga, probmutaga,
lenchaingap, maxtreeheight, numItera, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
numLabels |
numLabels. Default value = 3 |
numRules |
numRules. Default value = 8 |
deltafitsap |
deltafitsap. Default value = 0.5 |
p0sap |
p0sap. Default value = 0.5 |
p1sap |
p1sap. Default value = 0.5 |
amplMut |
amplMut. Default value = 0.1 |
nsubsap |
nsubsap. Default value = 10 |
probOptimLocal |
probOptimLocal. Default value = 0.00 |
numOptimLocal |
numOptimLocal. Default value = 0 |
idOptimLocal |
idOptimLocal. Default value = 0 |
probcrossga |
probcrossga. Default value = 0.5 |
probmutaga |
probmutaga. Default value = 0.5 |
lenchaingap |
lenchaingap. Default value = 10 |
maxtreeheight |
maxtreeheight. Default value = 8 |
numItera |
numItera. Default value = 10000 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted values for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("autoMPG6_train")
data_test <- RKEEL::loadKeelDataset("autoMPG6_test")
#Create algorithm
algorithm <- RKEEL::GFS_GSP_R(data_train, data_test)
algorithm <- RKEEL::GFS_GSP_R(data_train, data_test, numRules=2, numItera=10, maxtreeheight=2)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.