NU_SVR-R: NU_SVR_R KEEL Regression Algorithm

NU_SVR_RR Documentation

NU_SVR_R KEEL Regression Algorithm

Description

NU_SVR_R Regression Algorithm from KEEL.

Usage

NU_SVR_R(train, test, KernelType, C, eps, degree, gamma,
   coef0, nu, p, shrinking, seed)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

KernelType

KernelType. Default value = ?

C

C. Default value = ?

eps

eps. Default value = ?

degree

degree. Default value = ?

gamma

gamma. Default value = ?

coef0

coef0. Default value = ?

nu

nu. Default value = ?

p

p. Default value = ?

shrinking

shrinking. Default value = ?

seed

Seed for random numbers. If it is not assigned a value, the seed will be a random number

Value

A data.frame with the actual and predicted values for both train and test datasets.

Examples

data_train <- RKEEL::loadKeelDataset("autoMPG6_train")
data_test <- RKEEL::loadKeelDataset("autoMPG6_test")

#Create algorithm
algorithm <- RKEEL::NU_SVR_R(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

RKEEL documentation built on Sept. 15, 2023, 1:08 a.m.

Related to NU_SVR-R in RKEEL...