PDFC_C | R Documentation |
PDFC_C Classification Algorithm from KEEL.
PDFC_C(train, test, C, d, tolerance, epsilon, PDRFtype,
nominal_to_binary, preprocess_type, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
C |
C. Default value = 100.0 |
d |
d. Default value = 0.25 |
tolerance |
tolerance. Default value = 0.001 |
epsilon |
epsilon. Default value = 1.0E-12 |
PDRFtype |
PDRFtype. Default value = "Gaussian |
nominal_to_binary |
nominal_to_binary. Default value = TRUE |
preprocess_type |
preprocess_type. Default value = "Normalize" |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::PDFC_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.