PW_C KEEL Classification Algorithm

Share:

Description

PW_C Classification Algorithm from KEEL.

Usage

1
PW_C(train, test, beta, ro, epsilon)

Arguments

train

Train dataset as a data.frame object

test

Test dataset as a data.frame object

beta

beta. Default value = 8.0

ro

ro. Default value = 0.001

epsilon

epsilon. Default value = 0.001

Value

A data.frame with the actual and predicted classes for both train and test datasets.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")

#Create algorithm
algorithm <- RKEEL::PW_C(data_train, data_test)

#Run algorithm
algorithm$run()

#See results
algorithm$testPredictions

Want to suggest features or report bugs for rdrr.io? Use the GitHub issue tracker.