SGA_C | R Documentation |
SGA_C Classification Algorithm from KEEL.
SGA_C(train, test, mut_prob_1to0, mut_prob_0to1, cross_prob,
pop_size, evaluations, alfa, selection_type, k,
distance, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
mut_prob_1to0 |
mut_prob_1to0. Default value = 0.01 |
mut_prob_0to1 |
mut_prob_0to1. Default value = 0.001 |
cross_prob |
cross_prob. Default value = 1 |
pop_size |
pop_size. Default value = 50 |
evaluations |
evaluations. Default value = 10000 |
alfa |
alfa. Default value = 0.5 |
selection_type |
selection_type. Default value = "orden_based" |
k |
k. Default value = 1 |
distance |
distance. Default value = "Euclidean" |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::SGA_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.