SMO_C | R Documentation |
SMO_C Classification Algorithm from KEEL.
SMO_C(train, test, C, toleranceParameter, epsilon,
RBFKernel_gamma, normalized_PolyKernel_exponent,
normalized_PolyKernel_useLowerOrder, PukKernel_omega,
PukKernel_sigma, StringKernel_lambda,
StringKernel_subsequenceLength,
StringKernel_maxSubsequenceLength, StringKernel_normalize,
StringKernel_pruning, KernelType, FitLogisticModels,
ConvertNominalAttributesToBinary, PreprocessType, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
C |
C. Default value = 1.0 |
toleranceParameter |
toleranceParameter. Default value = 0.001 |
epsilon |
epsilon. Default value = 1.0e-12 |
RBFKernel_gamma |
RBFKernel_gamma. Default value = 0.01 |
normalized_PolyKernel_exponent |
normalized_PolyKernel_exponent. Default value = 1 |
normalized_PolyKernel_useLowerOrder |
normalized_PolyKernel_useLowerOrder. Default value = FALSE |
PukKernel_omega |
PukKernel_omega. Default value = 1.0 |
PukKernel_sigma |
PukKernel_sigma. Default value = 1.0 |
StringKernel_lambda |
StringKernel_lambda. Default value = 0.5 |
StringKernel_subsequenceLength |
StringKernel_subsequenceLength. Default value = 3 |
StringKernel_maxSubsequenceLength |
StringKernel_maxSubsequenceLength. Default value = 9 |
StringKernel_normalize |
StringKernel_normalize. Default value = FALSE |
StringKernel_pruning |
StringKernel_pruning. Default value = "None" |
KernelType |
KernelType. Default value = "PolyKernel" |
FitLogisticModels |
FitLogisticModels. Default value = FALSE |
ConvertNominalAttributesToBinary |
ConvertNominalAttributesToBinary. Default value = TRUE |
PreprocessType |
PreprocessType. Default value = "Normalize" |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::SMO_C(data_train, data_test)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.