Tan_GP_C | R Documentation |
Tan_GP_C Classification Algorithm from KEEL.
Tan_GP_C(train, test, population_size, max_generations,
max_deriv_size, rec_prob, mut_prob, copy_prob, w1, w2,
elitist_prob, support, seed)
train |
Train dataset as a data.frame object |
test |
Test dataset as a data.frame object |
population_size |
population_size. Default value = 150 |
max_generations |
max_generations. Default value = 100 |
max_deriv_size |
max_deriv_size. Default value = 20 |
rec_prob |
rec_prob. Default value = 0.8 |
mut_prob |
mut_prob. Default value = 0.1 |
copy_prob |
copy_prob. Default value = 0.01 |
w1 |
w1. Default value = 0.7 |
w2 |
w2. Default value = 0.8 |
elitist_prob |
elitist_prob. Default value = 0.06 |
support |
support. Default value = 0.03 |
seed |
Seed for random numbers. If it is not assigned a value, the seed will be a random number |
A data.frame with the actual and predicted classes for both train
and test
datasets.
data_train <- RKEEL::loadKeelDataset("iris_train")
data_test <- RKEEL::loadKeelDataset("iris_test")
#Create algorithm
algorithm <- RKEEL::Tan_GP_C(data_train, data_test)
algorithm <- RKEEL::Tan_GP_C(data_train, data_test, population_size = 5, max_generations = 10)
#Run algorithm
algorithm$run()
#See results
algorithm$testPredictions
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.