Nothing
## ------------------------------------------------------------------------
## classical machine learning contingency table measures
## ------------------------------------------------------------------------
.performance.accuracy <-
function(predictions, labels, cutoffs, fp, tp, fn, tn,
n.pos, n.neg, n.pos.pred, n.neg.pred) {
list( cutoffs, (tn+tp) / length(predictions) )
}
.performance.error.rate <-
function(predictions, labels, cutoffs, fp, tp, fn, tn,
n.pos, n.neg, n.pos.pred, n.neg.pred) {
list( cutoffs, (fn+fp) / length(predictions) )
}
.performance.false.positive.rate <-
function(predictions, labels, cutoffs, fp, tp, fn, tn,
n.pos, n.neg, n.pos.pred, n.neg.pred) {
list( cutoffs, fp / n.neg )
}
.performance.true.positive.rate <-
function(predictions, labels, cutoffs, fp, tp, fn, tn,
n.pos, n.neg, n.pos.pred, n.neg.pred) {
list( cutoffs, tp / n.pos )
}
.performance.false.negative.rate <-
function(predictions, labels, cutoffs, fp, tp, fn, tn,
n.pos, n.neg, n.pos.pred, n.neg.pred) {
list( cutoffs, fn / n.pos )
}
.performance.true.negative.rate <-
function(predictions, labels, cutoffs, fp, tp, fn, tn,
n.pos, n.neg, n.pos.pred, n.neg.pred) {
list( cutoffs, tn / n.neg )
}
.performance.positive.predictive.value <-
function(predictions, labels, cutoffs, fp, tp, fn, tn,
n.pos, n.neg, n.pos.pred, n.neg.pred) {
ppv <- tp / (fp + tp)
list( cutoffs, ppv )
}
.performance.negative.predictive.value <-
function(predictions, labels, cutoffs, fp, tp, fn, tn,
n.pos, n.neg, n.pos.pred, n.neg.pred) {
npv <- tn / (tn + fn)
list( cutoffs, npv )
}
.performance.prediction.conditioned.fallout <-
function(predictions, labels, cutoffs, fp, tp, fn, tn,
n.pos, n.neg, n.pos.pred, n.neg.pred) {
ppv <- .performance.positive.predictive.value(predictions, labels,
cutoffs, fp, tp, fn, tn,
n.pos, n.neg, n.pos.pred,
n.neg.pred)[[2]]
list( cutoffs, 1 - ppv )
}
.performance.prediction.conditioned.miss <-
function(predictions, labels, cutoffs, fp, tp, fn, tn,
n.pos, n.neg, n.pos.pred, n.neg.pred) {
npv <- .performance.negative.predictive.value(predictions, labels,
cutoffs, fp, tp, fn, tn,
n.pos, n.neg, n.pos.pred,
n.neg.pred)[[2]]
list( cutoffs, 1 - npv )
}
## ------------------------------------------------------------------------
## ...not actually performance measures, but very useful as a second axis
## against which to plot a "real" performance measure
## (popular example: lift charts)
## ------------------------------------------------------------------------
.performance.rate.of.positive.predictions <-
function(predictions, labels, cutoffs, fp, tp, fn, tn,
n.pos, n.neg, n.pos.pred, n.neg.pred) {
list( cutoffs, n.pos.pred / (n.pos + n.neg) )
}
.performance.rate.of.negative.predictions <-
function(predictions, labels, cutoffs, fp, tp, fn, tn,
n.pos, n.neg, n.pos.pred, n.neg.pred) {
list( cutoffs, n.neg.pred / (n.pos + n.neg) )
}
## ------------------------------------------------------------------------
## Classical statistical contingency table measures
## ------------------------------------------------------------------------
.performance.phi <-
function(predictions, labels, cutoffs, fp, tp, fn, tn,
n.pos, n.neg, n.pos.pred, n.neg.pred) {
list(cutoffs,
(tn*tp - fn*fp) /
(sqrt(n.pos) * sqrt(n.neg) * sqrt(n.pos.pred) * sqrt(n.neg.pred))
)
}
.performance.mutual.information <-
function(predictions, labels, cutoffs, fp, tp, fn, tn,
n.pos, n.neg, n.pos.pred, n.neg.pred) {
n.samples <- n.pos + n.neg
mi <- c()
for (k in 1:length(cutoffs)) {
kij <- rbind( c(tn[k],fn[k]), c(fp[k],tp[k]) )
ki.j. <- rbind(c(n.neg * n.neg.pred[k], n.neg.pred[k] * n.pos),
c(n.neg * n.pos.pred[k], n.pos * n.pos.pred[k]))
log.matrix <- log2( kij / ki.j.)
log.matrix[kij/ki.j.==0] <- 0
mi <- c(mi, log2(n.samples) + sum( kij * log.matrix) / n.samples )
}
list( cutoffs, mi )
}
#' @importFrom stats chisq.test
.performance.chisq <-
function(predictions, labels, cutoffs, fp, tp, fn, tn,
n.pos, n.neg, n.pos.pred, n.neg.pred) {
chisq <- c()
for (i in 1:length(cutoffs)) {
A <- rbind( c( tn[i], fn[i]), c(fp[i], tp[i]) )
chisq <- c(chisq, stats::chisq.test(A, correct=FALSE)$statistic )
}
list( cutoffs, chisq )
}
.performance.odds.ratio <-
function(predictions, labels, cutoffs, fp, tp, fn, tn,
n.pos, n.neg, n.pos.pred, n.neg.pred) {
list( cutoffs, tp * tn / (fn * fp) )
}
## ------------------------------------------------------------------------
## Other measures based on contingency tables
## ------------------------------------------------------------------------
.performance.lift <-
function(predictions, labels, cutoffs, fp, tp, fn, tn,
n.pos, n.neg, n.pos.pred, n.neg.pred) {
n.samples <- n.pos + n.neg
list( cutoffs, (tp / n.pos) / (n.pos.pred / n.samples) )
}
.performance.f <-
function(predictions, labels, cutoffs, fp, tp, fn, tn,
n.pos, n.neg, n.pos.pred, n.neg.pred, alpha) {
prec <- .performance.positive.predictive.value(predictions, labels,
cutoffs, fp, tp, fn, tn,
n.pos, n.neg, n.pos.pred,
n.neg.pred)[[2]]
list( cutoffs, 1/ ( alpha*(1/prec) + (1-alpha)*(1/(tp/n.pos)) ) )
}
#' @importFrom grDevices chull
.performance.rocconvexhull <-
function(predictions, labels, cutoffs, fp, tp, fn, tn,
n.pos, n.neg, n.pos.pred, n.neg.pred) {
x <- fp / n.neg
y <- tp / n.pos
finite.bool <- is.finite(x) & is.finite(y)
x <- x[ finite.bool ]
y <- y[ finite.bool ]
if (length(x) < 2) {
stop("Not enough distinct predictions to compute ROC convex hull.")
}
## keep only points on the convex hull
ind <- grDevices::chull(x, y)
x.ch <- x[ind]
y.ch <- y[ind]
## keep only convex hull points above the diagonal, except (0,0)
## and (1,1)
ind.upper.triangle <- x.ch < y.ch
x.ch <- c(0, x.ch[ind.upper.triangle], 1)
y.ch <- c(0, y.ch[ind.upper.triangle], 1)
## sort remaining points by ascending x value
ind <- order(x.ch)
x.ch <- x.ch[ind]
y.ch <- y.ch[ind]
list( x.ch, y.ch )
}
## ----------------------------------------------------------------------------
## Cutoff-independent measures
## ----------------------------------------------------------------------------
#' @importFrom stats approxfun
.performance.auc <-
function(predictions, labels, cutoffs, fp, tp, fn, tn,
n.pos, n.neg, n.pos.pred, n.neg.pred, fpr.stop) {
x <- fp / n.neg
y <- tp / n.pos
finite.bool <- is.finite(x) & is.finite(y)
x <- x[ finite.bool ]
y <- y[ finite.bool ]
if (length(x) < 2) {
stop(paste("Not enough distinct predictions to compute area",
"under the ROC curve."))
}
if (fpr.stop < 1) {
ind <- max(which( x <= fpr.stop ))
tpr.stop <- stats::approxfun( x[ind:(ind+1)], y[ind:(ind+1)] )(fpr.stop)
x <- c(x[1:ind], fpr.stop)
y <- c(y[1:ind], tpr.stop)
}
ans <- list()
auc <- 0
for (i in 2:length(x)) {
auc <- auc + 0.5 * (x[i] - x[i-1]) * (y[i] + y[i-1])
}
ans <- list( c(), auc)
names(ans) <- c("x.values","y.values")
return(ans)
}
# written by Thomas Unterthiner (unterthiner@bioinf.jku.at)
.performance.aucpr <-
function(predictions, labels, cutoffs, fp, tp, fn, tn,
n.pos, n.neg, n.pos.pred, n.neg.pred) {
tmp <- aggregate(list(fp=fp), by=list(tp=tp), min)
tp <- tmp$tp
fp <- tmp$fp
prec <- tp / (fp + tp)
rec <- tp / n.pos
if (fp[1] == 0 & tp[1] == 0) {
prec[1] = 1
}
finite.bool <- is.finite(prec) & is.finite(rec)
prec <- prec[ finite.bool ]
rec <- rec[ finite.bool ]
if (length(rec) < 2) {
stop(paste("Not enough distinct predictions to compute area",
"under the Precision/Recall curve."))
}
# if two points are too distant from each other, we need to
# correctly interpolate between them. This is done according to
# Davis & Goadrich,
#"The Relationship Between Precision-Recall and ROC Curves", ICML'06
for (i in seq_along(rec[-length(rec)])) {
if (tp[i+1] - tp[i] > 2) {
skew = (fp[i+1]-fp[i]) / (tp[i+1]-tp[i])
x = seq(1, tp[i+1]-tp[i], by=1)
rec <- append(rec, (x+tp[i])/n.pos, after=i)
prec <- append(prec, (x+tp[i])/(tp[i]+fp[i]+x+ skew*x), after=i)
}
}
auc <- 0
for (i in seq.int(from = 2, to = length(rec))) {
auc <- auc + 0.5 * (rec[i] - rec[i-1]) * (prec[i] + prec[i-1])
}
ans <- list( c(), auc)
names(ans) <- c("x.values","y.values")
return(ans)
}
#' @importFrom stats uniroot approxfun
.performance.precision.recall.break.even.point <-
function(predictions, labels, cutoffs, fp, tp, fn, tn,
n.pos, n.neg, n.pos.pred, n.neg.pred) {
pred <- prediction( predictions, labels)
perf <- performance( pred, measure="prec", x.measure="rec")
x <- rev(perf@x.values[[1]])
y <- rev(perf@y.values[[1]])
alpha <- rev(perf@alpha.values[[1]])
finite.bool <- is.finite(alpha) & is.finite(x) & is.finite(y)
x <- x[ finite.bool ]
y <- y[ finite.bool ]
alpha <- alpha[ finite.bool ]
if (length(x) < 2) {
stop(paste("Not enough distinct predictions to compute",
"precision/recall intersections."))
}
intersection.cutoff <- c()
intersection.pr <- c()
## find all intersection points by looking at all intervals (i,i+1):
## if the difference function between x and y has different signs at the
## interval boundaries, then an intersection point is in the interval;
## compute as the root of the difference function
if ( (x[1]-y[1]) == 0) {
intersection.cutoff <- c( alpha[1] )
intersection.pr <- c( x[1] )
}
for (i in (1:(length(alpha)-1))) {
if ((x[i+1]-y[i+1]) == 0) {
intersection.cutoff <- c( intersection.cutoff, alpha[i+1] )
intersection.pr <- c( intersection.pr, x[i+1] )
} else if ((x[i]-y[i])*(x[i+1]-y[i+1]) < 0 ) {
ans <- stats::uniroot(stats::approxfun(c(alpha[i], alpha[i+1] ),
c(x[i]-y[i], x[i+1]-y[i+1])),
c(alpha[i],alpha[i+1]))
intersection.cutoff <- c(intersection.cutoff, ans$root)
intersection.pr <- c(intersection.pr, ans$f.root)
}
}
list( rev(intersection.cutoff), rev(intersection.pr) )
}
#' @importFrom stats median
.performance.calibration.error <-
function(predictions, labels, cutoffs, fp, tp, fn, tn,
n.pos, n.neg, n.pos.pred, n.neg.pred, window.size) {
if (window.size > length(predictions)) {
stop("Window size exceeds number of predictions.")
}
if (min(predictions)<0 || max(predictions)>1) {
stop("Calibration error needs predictions between 0 and 1")
}
pos.label <- levels(labels)[2]
neg.label <- levels(labels)[1]
ordering <- rev(order( predictions ))
predictions <- predictions[ ordering ]
labels <- labels[ ordering ]
median.cutoffs <- c()
calibration.errors <- c()
for (left.index in 1 : (length(predictions) - window.size+1) ) {
right.index <- left.index + window.size - 1
pos.fraction <-
sum(labels[left.index : right.index] == pos.label) / window.size
mean.prediction <- mean( predictions[ left.index : right.index ] )
calibration.errors <- c(calibration.errors,
abs(pos.fraction - mean.prediction))
median.cutoffs <- c(median.cutoffs,
stats::median(predictions[left.index:right.index]))
}
list( median.cutoffs, calibration.errors )
}
.performance.mean.cross.entropy <-
function(predictions, labels, cutoffs, fp, tp, fn, tn,
n.pos, n.neg, n.pos.pred, n.neg.pred) {
if (! all(levels(labels)==c(0,1)) ||
any(predictions<0) || any(predictions>1) ) {
stop(paste("Class labels need to be 0 and 1 and predictions between",
"0 and 1 for mean cross entropy."))
}
pos.label <- levels(labels)[2]
neg.label <- levels(labels)[1]
list( c(), - 1/length(predictions) *
(sum( log( predictions[which(labels==pos.label)] )) +
sum( log( 1 - predictions[which(labels==neg.label)] ))) )
}
.performance.root.mean.squared.error <-
function(predictions, labels, cutoffs, fp, tp, fn, tn,
n.pos, n.neg, n.pos.pred, n.neg.pred) {
## convert labels from factor to numeric values
labels <- as.numeric(levels(labels))[labels]
if (any(is.na(labels))) {
stop("For rmse predictions have to be numeric.")
}
list( c(), sqrt( 1/length(predictions) *
sum( (predictions - labels)^2 )) )
}
## ----------------------------------------------------------------------------
## Derived measures:
## ----------------------------------------------------------------------------
.performance.sar <- function( predictions, labels, cutoffs, fp, tp, fn, tn,
n.pos, n.neg, n.pos.pred, n.neg.pred) {
pred <- prediction( predictions, labels)
perf.acc <- performance( pred, measure="acc")
perf.rmse <- performance( pred, measure="rmse")
perf.auc <- performance( pred, measure="auc")
list(cutoffs,
1/3 * (perf.acc@y.values[[1]] +
(1 - perf.rmse@y.values[[1]]) +
perf.auc@y.values[[1]]))
}
## ----------------------------------------------------------------------------
## Measures taking into account actual cost considerations
## ----------------------------------------------------------------------------
.performance.expected.cost <-
function(predictions, labels, cutoffs, fp, tp, fn, tn,
n.pos, n.neg, n.pos.pred, n.neg.pred) {
## kick out suboptimal values (i.e. fpr/tpr pair for which another one
## with same fpr and higher tpr exists,
## or one for which one with same tpr but lower fpr exists
if (n.neg==0 || n.pos==0) {
stop(paste("At least one positive and one negative sample are",
"needed to compute a cost curve."))
}
fpr <- fp / n.neg
tpr <- tp / n.pos
## sort by fpr (ascending), in case of ties by descending tpr
ind <- order(fpr,-tpr)
fpr <- fpr[ind]
tpr <- tpr[ind]
## for tied fprs, only the one with the highest tpr is kept
ind <- !duplicated(fpr)
fpr <- fpr[ind]
tpr <- tpr[ind]
## for tied tprs, only keep the one with the lowest fpr
ind <- order(-tpr,fpr)
fpr <- fpr[ind]
tpr <- tpr[ind]
ind <- !duplicated(tpr)
fpr <- fpr[ind]
tpr <- tpr[ind]
if (!any(0==fpr & 0==tpr)) {
fpr <- c(0,fpr)
tpr <- c(0,tpr)
}
if (!any(1==fpr & 1==tpr)) {
fpr <- c(fpr,1)
tpr <- c(tpr,1)
}
## compute all functions
f <- list()
for (i in 1:length(fpr)) {
f <- c(f, .construct.linefunct( 0, fpr[i], 1, 1-tpr[i] ))
}
## compute all intersection points
x.values <- c()
y.values <- c()
for (i in 1:(length(fpr)-1)) {
for (j in (i+1):length(fpr)) {
ans <- .intersection.point( f[[i]], f[[j]] )
if (all(is.finite(ans))) {
y.values.at.current.x <- c()
for (k in 1:length(f)) {
y.values.at.current.x <- c(y.values.at.current.x,
f[[k]](ans[1]))
}
if (abs(ans[2] - min(y.values.at.current.x )) <
sqrt(.Machine$double.eps)) {
x.values <- c(x.values, ans[1])
y.values <- c(y.values, ans[2])
}
}
}
}
if (!any(0==x.values & 0==y.values)) {
x.values <- c(0,x.values)
y.values <- c(0,y.values)
}
if (!any(1==x.values & 0==y.values)) {
x.values <- c(x.values,1)
y.values <- c(y.values,0)
}
ind <- order( x.values)
list( x.values[ind], y.values[ind] )
}
.performance.cost <-
function(predictions, labels, cutoffs, fp, tp, fn, tn,
n.pos, n.neg, n.pos.pred, n.neg.pred, cost.fp, cost.fn) {
n.samples <- n.pos + n.neg
cost <- ((n.pos / n.samples) * (fn / n.pos) * cost.fn +
(n.neg / n.samples) * (fp / n.neg) * cost.fp)
list( cutoffs, cost )
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.