Nothing
###############################################################################
## Kolmogorov(-Smirnov) minimum distance estimator
###############################################################################
setMethod("ksEstimator", signature(x = "numeric", distribution = "Binom"),
function(x, distribution, param, eps = .Machine$double.eps^0.5){
if(missing(param)){
KSdist1 <- function(prob, x, size){
supp <- 0:size
edf <- ecdf(x)
return(max(abs(edf(supp)-pbinom(supp, size = size, prob = prob))))
}
KSdist2 <- function(size, x, eps){
unlist(optimize(f = KSdist1, interval = c(0, 1), tol = eps,
x = x, size = size))
}
size <- max(x):(max(x) + 100)
res <- sapply(size, KSdist2, x = x, eps = eps)
ind <- which.min(res[2,])
return(list(size = size[ind], prob = res[1,ind]))
}
if(param == "prob"){
if(max(x) > size(distribution))
stop("maximum of 'x' > 'size' of distribution")
KSdist.p <- function(prob, x, size){
supp <- 0:size
edf <- ecdf(x)
return(max(abs(edf(supp)-pbinom(supp, size = size, prob = prob))))
}
res <- optimize(f = KSdist.p, interval = c(0, 1), tol = eps,
x = x, size = size(distribution))$minimum
return(list(size = size(distribution), prob = res))
}
if(param == "size"){
KSdist.s <- function(size, x, prob){
supp <- 0:size
edf <- ecdf(x)
return(max(abs(edf(supp)-pbinom(supp, size = size, prob = prob))))
}
size <- max(x):(max(x) + 100)
ind <- which.min(sapply(size, KSdist.s, x = x, prob = prob(distribution)))
return(list(size = size[ind], prob = prob(distribution)))
}
stop("wrong 'param' specified")
})
###############################################################################
## Minimum KS-distance for Poisson distribution
###############################################################################
setMethod("ksEstimator", signature(x = "numeric", distribution = "Pois"),
function(x, distribution, param, eps = .Machine$double.eps^0.5){
KSdist <- function(lambda, x){
edf <- ecdf(x)
supp <- 0:max(qpois(1-1e-8, lambda=lambda), max(x))
return(max(abs(edf(supp)-ppois(supp, lambda=lambda))))
}
res <- optimize(f = KSdist, interval = c(0, max(x)), tol = eps, x = x)$minimum
return(list(lambda = res))
})
###############################################################################
## Minimum KS-distance for normal distribution
###############################################################################
setMethod("ksEstimator", signature(x = "numeric", distribution = "Norm"),
function(x, distribution, param, eps = .Machine$double.eps^0.5){
if(missing(param)){
KSdist <- function(param, x){
if(param[2] <= 0) return(Inf)
return(ks.test(x, "pnorm", mean = param[1], sd = param[2])$statistic)
}
res <- optim(c(mean(distribution), sd(distribution)), fn = KSdist,
method = "Nelder-Mead", control=list(reltol=eps),
x = x)$par
return(list(mean = res[1], sd = res[2]))
}
if(param == "mean"){
KSdist.m <- function(mean, x, sd){
return(ks.test(x, "pnorm", mean = mean, sd = sd)$statistic)
}
res <- optimize(f = KSdist.m, interval = c(min(x), max(x)),
tol = eps, x = x, sd = sd(distribution))$minimum
return(list(mean = res, sd = sd(distribution)))
}
if(param == "sd"){
KSdist.s <- function(sd, x, mean){
return(ks.test(x, "pnorm", mean = mean, sd = sd)$statistic)
}
res <- optimize(f = KSdist.s,
interval = c(.Machine$double.eps^0.5, max(x)-min(x)),
tol = eps, x = x, mean = mean(distribution))$minimum
return(list(mean = mean(distribution), sd = res))
}
stop("wrong 'param' specified")
})
###############################################################################
## Minimum KS-distance for lognormal distribution
###############################################################################
setMethod("ksEstimator", signature(x = "numeric", distribution = "Lnorm"),
function(x, distribution, param, eps = .Machine$double.eps^0.5){
if(missing(param)){
KSdist <- function(param, x){
if(param[2] <= 0) return(Inf)
return(ks.test(x, "plnorm", meanlog = param[1], sdlog = param[2])$statistic)
}
res <- optim(c(meanlog(distribution), sdlog(distribution)), fn = KSdist,
method = "Nelder-Mead", control=list(reltol=eps),
x = x)$par
return(list(meanlog = res[1], sdlog = res[2]))
}
if(param == "meanlog"){
KSdist.m <- function(meanlog, x, sdlog){
return(ks.test(x, "plnorm", meanlog = meanlog, sdlog = sdlog)$statistic)
}
res <- optimize(f = KSdist.m, interval = c(min(x), max(x)),
tol = eps, x = x, sdlog = sdlog(distribution))$minimum
return(list(meanlog = res, sdlog = sdlog(distribution)))
}
if(param == "sdlog"){
KSdist.s <- function(sdlog, x, meanlog){
return(ks.test(x, "plnorm", meanlog = meanlog, sdlog = sdlog)$statistic)
}
res <- optimize(f = KSdist.s,
interval = c(.Machine$double.eps^0.5, max(x)-min(x)),
tol = eps, x = x, meanlog = meanlog(distribution))$minimum
return(list(meanlog = meanlog(distribution), sdlog = res))
}
stop("wrong 'param' specified")
})
###############################################################################
## Minimum KS-distance for Gumbel distribution
###############################################################################
setMethod("ksEstimator", signature(x = "numeric", distribution = "Gumbel"),
function(x, distribution, param, eps = .Machine$double.eps^0.5){
if(missing(param)){
KSdist <- function(param, x){
if(param[2] <= 0) return(Inf)
return(ks.test(x, "pgumbel", loc = param[1], scale = param[2])$statistic)
}
res <- optim(c(mean(distribution), sd(distribution)), fn = KSdist,
method = "Nelder-Mead", control=list(reltol=eps),
x = x)$par
return(list(loc = res[1], scale = res[2]))
}
if(param == "loc"){
KSdist.l <- function(loc, x, scale){
return(ks.test(x, "pgumbel", loc = loc, scale = scale)$statistic)
}
res <- optimize(f = KSdist.l, interval = c(min(x), max(x)),
tol = eps, x = x, scale = scale(distribution))$minimum
return(list(loc = res, scale = scale(distribution)))
}
if(param == "scale"){
KSdist.s <- function(scale, x, loc){
return(ks.test(x, "pgumbel", loc = loc, scale = scale)$statistic)
}
res <- optimize(f = KSdist.s,
interval = c(.Machine$double.eps^0.5, max(x)-min(x)),
tol = eps, x = x, loc = loc(distribution))$minimum
return(list(loc = loc(distribution), scale = res))
}
stop("wrong 'param' specified")
})
###############################################################################
## Minimum KS-distance for Exponential distribution
###############################################################################
setMethod("ksEstimator", signature(x = "numeric", distribution = "Exp"),
function(x, distribution, param, eps = .Machine$double.eps^0.5){
KSdist <- function(rate, x){
return(ks.test(x, "pexp", rate = rate)$statistic)
}
res <- optimize(f = KSdist, interval = c(0, max(x)), tol = eps, x = x)$minimum
return(list(rate = res))
})
###############################################################################
## Minimum KS-distance for Gamma model
###############################################################################
setMethod("ksEstimator", signature(x = "numeric", distribution = "Gammad"),
function(x, distribution, param, eps = .Machine$double.eps^0.5){
if(missing(param)){
KSdist <- function(param, x){
if((param[1] <= 0) || (param[2] <= 0)) return(Inf)
return(ks.test(x, "pgamma", scale = param[1], shape = param[2])$statistic)
}
res <- optim(c(scale(distribution), shape(distribution)), fn = KSdist, method = "Nelder-Mead",
control=list(reltol=eps), x = x)$par
return(list(scale = res[1], shape = res[2]))
}
if(param == "scale"){
KSdist.sc <- function(scale, x, shape){
return(ks.test(x, "pgamma", scale = scale, shape = shape)$statistic)
}
res <- optimize(f = KSdist.sc, interval = c(min(x), max(x)),
tol = eps, x = x, shape = shape(distribution))$minimum
return(list(scale = res, shape = shape(distribution)))
}
if(param == "shape"){
KSdist.sh <- function(shape, x, scale){
return(ks.test(x, "pgamma", scale = scale, shape = shape)$statistic)
}
res <- optimize(f = KSdist.sh,
interval = c(.Machine$double.eps^0.5, max(x)-min(x)),
tol = eps, x = x, scale = scale(distribution))$minimum
return(list(scale = scale(distribution), shape = res))
}
stop("wrong 'param' specified")
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.