Nothing
context("ERLogisticLossClassifier")
# Simple dataset used in the tests
data(testdata)
modelform <- formula(y ~ .)
classname<-all.vars(modelform)[1]
D <- testdata$D
D_test <- testdata$D_test
X <- testdata$X
X_u <- testdata$X_u
y <- testdata$y
X_test <- testdata$X_test
y_test <- testdata$y_test
set.seed(1)
test_that("Same result for different input modalities",{
g_mat <- EntropyRegularizedLogisticRegression(X,y,X_u)
g_df <- EntropyRegularizedLogisticRegression(modelform,D)
expect_equal(predict(g_mat,X_test),predict(g_df,D_test))
expect_equal(loss(g_mat,X_test,y_test),loss(g_df,D_test))
})
test_that("Entropy Regularized LR is the same as LR when parameter is set to 0",{
g_sup <- LogisticRegression(X,y,lambda=1)
g_semi <- EntropyRegularizedLogisticRegression(X,y,X_u,lambda=1,lambda_entropy=0.0)
expect_equal(g_sup@w,g_semi@w,tolerance=10e-6)
expect_equal(loss(g_sup,X_test,y_test),
loss(g_semi,X_test,y_test)
,tolerance=10e-7)
})
test_that("Gradient superficially correct",{
library("numDeriv")
X <- cbind(1,testdata$X)
X_u <- cbind(1,testdata$X_u)
y <- testdata$y
classnames <- levels(y)
for (i in 1:10) {
w <- rnorm(ncol(X))
lambda <- abs(10*rnorm(1))
le <- abs(10*rnorm(1))
grad_num <- as.numeric(
numDeriv::grad(
loss_erlr,
w, X=X, y=y, X_u=X_u,
classnames=classnames,
lambda=lambda,
lambda_entropy=le,
method="simple")
)
grad_exact <- as.numeric(
grad_erlr(
w, X=X, y=y, X_u=X_u,
classnames=classnames,
lambda=lambda,
lambda_entropy=le)
)
expect_equal(grad_num,grad_exact,
tolerance=10e-4)
}
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.