Description Usage Arguments Details Value References See Also Examples
Askey's model
C(x)= (1-x)^α 1_{[0,1]}(x)
1 2 |
alpha |
a numerical value in the interval [0,1] |
var,scale,Aniso,proj |
optional arguments; same meaning for any
|
This covariance function is valid for dimension d if α ≥ (d+1)/2. For α=1 we get the well-known triangle (or tent) model, which is only valid on the real line.
RMaskey returns an object of class RMmodel.
Covariance function
Askey, R. (1973) Radial characteristic functions. Technical report, Research Center, University of Wisconsin-Madison.
Golubov, B. I. (1981) On Abel-Poisson type and Riesz means, Anal. Math. 7, 161-184.
Applications as covariance function
Gneiting, T. (1999) Correlation functions for atmospheric data analysis. Quart. J. Roy. Meteor. Soc., 125:2449-2464.
Gneiting, T. (2002) Compactly supported correlation functions. J. Multivar. Anal., 83:493-508.
Wendland, H. (1994) Ein Beitrag zur Interpolation mit radialen Basisfunktionen. Diplomarbeit, Goettingen.
Wendland, H. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math., 4:389-396, 1995.
Tail correlation function (for α ≥ [d / 2] + 1)
Strokorb, K., Ballani, F., and Schlather, M. (2014) Tail correlation functions of max-stable processes: Construction principles, recovery and diversity of some mixing max-stable processes with identical TCF. Extremes, Submitted.
RMmodel,
RMbigneiting,
RMgengneiting,
RMgneiting,
RFsimulate,
RFfit.
1 2 3 4 5 6 7 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.