Description Usage Arguments Details Value Note References See Also Examples
The function estimates arbitrary parameters of a random field specification with various methods. Currently, the models to be fitted can be
Gaussian random fields
linear models
The fitting of max-stable random fields and others has not been implemented yet.
1 2 3 4 |
model,params |
\argModel
All parameters that are set to Type |
x |
\argX |
y,z |
\argYz |
T |
\argT |
grid |
\argGrid |
data |
\argData |
lower |
\argLower |
upper |
\argUpper |
methods |
\argFitmethods |
sub.methods |
\argFitsubmethods . See Details. |
users.guess |
\argUsersguess |
distances,dim |
\argDistances |
optim.control |
\argOptimcontrol |
transform |
\argTransform |
... |
\argDots |
For details on the simulation methods see
fitgauss for Gaussian random fields
fitgauss for linear models
If x-coordinates are not given, the function will check
data for NAs and will perform imputing.
The function has many more options to tune the optimizer,
see RFoptions for details.
If the model defines a Gaussian random field, the options
for methods and submethods are currently
"ml" and c("self", "plain", "sqrt.nr", "sd.inv", "internal"),
respectively.
The result depends on the logical value of
spConform.
If TRUE, an S4 object is created. In case the model indicates
a Gaussian random field, an
RFfit object is created.
If spConform=FALSE, a list is returned.
In case the model indicates
a Gaussian random field, the details are given in fitgauss.
An important optional argument is boxcox which indicates
a Box-Cox transformation; see boxcox in RFoptions
and RFboxcox for details.
Instead of optim, other optimisers can be used,
see RFfitOptimiser.
Several advanced options can be found in sections ‘General
options’ and ‘fit’ of RFoptions.
In particular, boxcox, boxcox_lb, boxcox_ub
allow Box-Cox transformation.
This function does not depend on the value of
RFoptions()$PracticalRange.
The function RFfit always uses the standard specification
of the covariance model as given in RMmodel.
Burnham, K. P. and Anderson, D. R. (2002) Model selection and Multi-Model Inference: A Practical Information-Theoretic Approach. 2nd edition. New York: Springer.
RFfitOptimiser,
RFlikelihood,
RFratiotest,
RMmodel,
RandomFields,
weather.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 | RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
## RFoptions(seed=NA) to make them all random again
RFoptions(modus_operandi="sloppy")
#########################################################
## simulate some data first ##
points <- 100
x <- runif(points, 0, 3)
y <- runif(points, 0, 3) ## random points in square [0, 3]^2
model <- RMgencauchy(alpha=1, beta=2)
d <- RFsimulate(model, x=x, y=y, grid=FALSE, n=100) #1000
#########################################################
## estimation; 'NA' means: "to be estimated" ##
estmodel <- RMgencauchy(var=NA, scale=NA, alpha=NA, beta=2) +
RMtrend(mean=NA)
RFfit(estmodel, data=d)
#########################################################
## coupling alpha and beta ##
estmodel <- RMgencauchy(var=NA, scale=NA, alpha=NA, beta=NA) +
RMtrend(NA)
RFfit(estmodel, data=d, transform = NA) ## just for information
trafo <- function(a) c(a[1], rep(a[2], 2))
fit <- RFfit(estmodel, data=d,
transform = list(c(TRUE, TRUE, FALSE), trafo))
print(fit)
print(fit, full=TRUE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.