RFloglikelihood: Likelihood and estimation of linear models

Description Usage Arguments Details Value See Also Examples

Description

RFloglikelihood returns the log likelihood for Gaussian random fields. In case NAs are given that refer to linear modeling, the ML of the linear model is returned.

Usage

1
2
3
RFlikelihood(model, x, y = NULL, z = NULL, T = NULL, grid = NULL,
                data, params, distances, dim, likelihood,
                estimate_variance =NA, ...) 

Arguments

model,params \argModel
x \argX
y,z \argYz
T \argT
grid \argGrid
distances,dim \argDistances
data \argData
likelihood

Not programmed yet. Character. Choice of kind of likelihood ("full", "composite", etc.), see also likelihood for RFfit in RFoptions.

estimate_variance

logical or NA. See Details.

... \argDots

Details

The function calculates the likelihood for data of a Gaussian process with given covariance structure. The covariance structure may not have NA values in the parameters except for a global variance. In this case the variance is returned that maximizes the likelihood. Additional to the covariance structure the model may include a trend. The latter may contain unknown linear parameters. In this case again, the unknown parameters are estimated, and returned.

Value

RFloglikelihood returns a list containing the likelihood, the log likelihood, and the global variance (if estimated – see details).

See Also

Bayesian, RMmodel, RFfit, RFsimulate, RFlinearpart.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
##                   RFoptions(seed=NA) to make them all random again


requireNamespace("mvtnorm")

pts <- 4
repet <- 3
model <- RMexp()
x <- runif(n=pts, min=-1, max=1)
y <- runif(n=pts, min=-1, max=1)
dta <- as.matrix(RFsimulate(model, x=x, y=y, n=repet, spC = FALSE))
print(cbind(x, y, dta))
print(system.time(likeli <- RFlikelihood(model, x, y, data=dta)))
str(likeli, digits=8)

L <- 0
C <- RFcovmatrix(model, x, y)
for (i in 1:ncol(dta)) {
  print(system.time(dn <- mvtnorm::dmvnorm(dta[,i], mean=rep(0, nrow(dta)),
sigma=C, log=TRUE)))
  L <- L + dn
}
print(L)
stopifnot(all.equal(likeli$log, L))






pts <- 4
repet <- 1
trend <- 2 * sin(R.p(new="isotropic")) + 3
#trend <- RMtrend(mean=0)
model <- 2 * RMexp() + trend
x <- seq(0, pi, len=pts)
dta <- as.matrix(RFsimulate(model, x=x, n=repet, spC = FALSE))
print(cbind(x, dta))

print(system.time(likeli <- RFlikelihood(model, x, data=dta)))
str(likeli, digits=8)

L <- 0
tr <- RFfctn(trend, x=x, spC = FALSE)
C <- RFcovmatrix(model, x)
for (i in 1:ncol(dta)) {
  print(system.time(dn <- mvtnorm::dmvnorm(dta[,i], mean=tr, sigma=C,log=TRUE)))
  L <- L + dn
}
print(L)

stopifnot(all.equal(likeli$log, L))







pts <- c(3, 4)
repet <- c(2, 3)
trend <- 2 * sin(R.p(new="isotropic")) + 3
model <- 2 * RMexp() + trend
x <- y <- dta <- list()
for (i in 1:length(pts)) {
  x[[i]] <- list(x = runif(n=pts[i], min=-1, max=1),
                 y = runif(n=pts[i], min=-1, max=1))
  dta[[i]] <- as.matrix(RFsimulate(model, x=x[[i]]$x, y=x[[i]]$y,
                                    n=repet[i], spC = FALSE))
}

print(system.time(likeli <- RFlikelihood(model, x, data=dta)))
str(likeli, digits=8)

L <- 0
for (p in 1:length(pts)) {
  tr <- RFfctn(trend, x=x[[p]]$x, y=x[[p]]$y,spC = FALSE)
  C <- RFcovmatrix(model, x=x[[p]]$x, y=x[[p]]$y)
  for (i in 1:ncol(dta[[p]])) {
    print(system.time(dn <- mvtnorm::dmvnorm(dta[[p]][,i], mean=tr, sigma=C,
                                    log=TRUE)))
    L <- L + dn
  }
}
print(L)
stopifnot(all.equal(likeli$log, L))

RandomFields documentation built on Jan. 19, 2022, 1:06 a.m.