Description Usage Arguments Details Value Note Author(s) References See Also Examples
RMtrend
is a pure trend model with covariance 0.
1 |
mean |
numeric or RMmodel.
If it is numerical, it should be a vector of length p, where
p is the number of variables taken into account by the
corresponding multivariate random field
(Z_1(.),…,Z_p(.));
the i-th component of |
Note that this function refers to trend surfaces in the geostatistical
framework. Fixed effects in the mixed models framework are also being
implemented, see RFformula
.
RMtrend
returns an object of class RMmodel
.
Using uncapsulated subtraction to build up a covariance
function is ambiguous, see the examples below.
Best to define the trend separately, or to use
R.minus
.
; \martin
Chiles, J. P., Delfiner, P. (1999) Geostatistics: Modelling Spatial Uncertainty. New York: John Wiley & Sons.
RMmodel
,
RFformula
,
RFsimulate
,
RMplus
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 | RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
## RFoptions(seed=NA) to make them all random again
## first simulate some data with a sine and a mean as trend
repet <- 100
x <- seq(0, pi, len=10)
trend <- 2 * sin(R.p(new="isotropic")) + 3
model1 <- RMexp(var=2, scale=1) + trend
dta <- RFsimulate(model1, x=x, n=repet)
## now, let us estimate variance, scale, and two parameters of the trend
model2 <- RMexp(var=NA, scale=NA) + NA * sin(R.p(new="isotropic")) + NA
print(RFfit(model2, data=dta))
## model2 can be made explicit by enclosing the trend parts by
## 'RMtrend'
model3 <- RMexp(var=NA, scale=NA) + NA *
RMtrend(sin(R.p(new="isotropic"))) + RMtrend(NA)
print(RFfit(model2, data=dta))
## IMPORTANT: subtraction is not a way to combine definite models
## with trends
trend <- -1
(model0 <- RMexp(var=0.4) + trend) ## exponential covariance with mean -1
(model1 <- RMexp(var=0.4) + -1) ## same as model0
(model2 <- RMexp(var=0.4) + RMtrend(-1)) ## same as model0
(model3 <- RMexp(var=0.4) - 1) ## this is a purely deterministic model
## with exponential trend
plot(RFsimulate(model=model0, x=x, y=x)) ## exponential covariance
## and mean -1
plot(RFsimulate(model=model1, x=x, y=x)) ## dito
plot(RFsimulate(model=model2, x=x, y=x)) ## dito
plot(RFsimulate(model=model3, x=x, y=x)) ## purely deterministic model!
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.