Description Usage Arguments Details Value Author(s) References See Also Examples
Calculates the empirical (cross-)madogram. The empirical (cross-)madogram of two random fields X and Y is given by
γ(r):=1/N(r) ∑_{(t_{i},t_{j})|t_{i,j}=r} |(X(t_{i})-X(t_{j}))||(Y(t_{i})-Y(t_{j}))|
where t_{i,j}:=t_{i}-t_{j}, and where N(r) denotes the number of pairs of data points with distancevector t_{i,j}=r.
1 2 3 |
model,params |
\argModel |
x |
\argX |
y,z |
\argYz |
T |
\argT |
grid |
\argGrid |
distances,dim |
\argDistances |
... |
\argDots |
data |
\argData |
bin |
\argBin |
phi |
\argPhi |
theta |
\argTheta |
deltaT |
\argDeltaT |
vdim |
\argVdim |
RFmadogram
computes the empirical
cross-madogram for given (multivariate) spatial data.
The spatial coordinates x
, y
, z
should be vectors. For random fields of
spatial dimension d > 3 write all vectors as columns of matrix x. In
this case do neither use y, nor z and write the columns in
gridtriple
notation.
If the data is spatially located on a grid a fast algorithm based on
the fast Fourier transformed (fft) will be used.
As advanced option the calculation method can also be changed for grid
data (see RFoptions
.)
It is also possible to use RFmadogram
to calculate
the pseudomadogram (see RFoptions
).
RFmadogram
returns objects of class
RFempVariog
.
Jonas Auel; Sebastian Engelke; Johannes Martini; \martin
Gelfand, A. E., Diggle, P., Fuentes, M. and Guttorp, P. (eds.) (2010) Handbook of Spatial Statistics. Boca Raton: Chapman & Hall/CRL.
Stein, M. L. (1999) Interpolation of Spatial Data. New York: Springer-Verlag
RMstable
,
RMmodel
,
RFsimulate
,
RFfit
,
RFcov
,
RFpseudomadogram
.
RFvariogram
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 | RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
## RFoptions(seed=NA) to make them all random again
n <- 1 ## use n <- 2 for better results
## isotropic model
model <- RMexp()
x <- seq(0, 10, 0.02)
z <- RFsimulate(model, x=x, n=n)
emp.vario <- RFmadogram(data=z)
plot(emp.vario)
## anisotropic model
model <- RMexp(Aniso=cbind(c(2,1), c(1,1)))
x <- seq(0, 10, 0.05)
z <- RFsimulate(model, x=x, y=x, n=n)
emp.vario <- RFmadogram(data=z, phi=4)
plot(emp.vario)
## space-time model
model <- RMnsst(phi=RMexp(), psi=RMfbm(alpha=1), delta=2)
x <- seq(0, 10, 0.05)
T <- c(0, 0.1, 100)
z <- RFsimulate(x=x, T=T, model=model, n=n)
emp.vario <- RFmadogram(data=z, deltaT=c(10, 1))
plot(emp.vario, nmax.T=3)
## multivariate model
model <- RMbiwm(nudiag=c(1, 2), nured=1, rhored=1, cdiag=c(1, 5),
s=c(1, 1, 2))
x <- seq(0, 20, 0.1)
z <- RFsimulate(model, x=x, y=x, n=n)
emp.vario <- RFmadogram(data=z)
plot(emp.vario)
## multivariate and anisotropic model
model <- RMbiwm(A=matrix(c(1,1,1,2), nc=2),
nudiag=c(0.5,2), s=c(3, 1, 2), c=c(1, 0, 1))
x <- seq(0, 20, 0.1)
dta <- RFsimulate(model, x, x, n=n)
ev <- RFmadogram(data=dta, phi=4)
plot(ev, boundaries=FALSE)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.