RFvariogram: Empirical (Cross-)Variogram

Description Usage Arguments Details Value Author(s) References See Also Examples

Description

Calculates empirical (cross-)variogram.

Usage

1
2
3
4
RFvariogram(model, x, y=NULL, z = NULL, T=NULL, grid,
            params, distances, dim, ...,
	    data, bin=NULL, phi=NULL, theta = NULL,
	    deltaT = NULL, vdim=NULL)

Arguments

model,params \argModel
x \argX
y,z \argYz
T \argT
grid \argGrid
distances,dim \argDistances
... \argDots
data \argData
bin \argBin
phi \argPhi
theta \argTheta
deltaT \argDeltaT
vdim \argVdim

Details

RFvariogram computes the empirical cross-variogram for given (multivariate) spatial data.

The empirical (cross-)variogram of two random fields X and Y is given by

γ(r):=1/2N(r) ∑_{(t_{i},t_{j})|t_{i,j}=r} (X(t_{i})-X(t_{j}))(Y(t_{i})-Y(t_{j}))

where t_{i,j}:=t_{i}-t_{j}, and where N(r) denotes the number of pairs of data points with distancevector t_{i,j}=r.

The spatial coordinates x, y, z should be vectors. For random fields of spatial dimension d > 3 write all vectors as columns of matrix x. In this case do neither use y, nor z and write the columns in gridtriple notation.

If the data is spatially located on a grid a fast algorithm based on the fast Fourier transformed (fft) will be used. As advanced option the calculation method can also be changed for grid data (see RFoptions.)

Value

RFvariogram returns objects of class RFempVariog.

Author(s)

Sebastian Engelke; Johannes Martini; \martin

References

Gelfand, A. E., Diggle, P., Fuentes, M. and Guttorp, P. (eds.) (2010) Handbook of Spatial Statistics. Boca Raton: Chapman & Hall/CRL.

Stein, M. L. (1999) Interpolation of Spatial Data. New York: Springer-Verlag

See Also

RMstable, RMmodel, RFsimulate, RFfit, RFcov, RFpseudovariogram. RFmadogram.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
##                   RFoptions(seed=NA) to make them all random again

n <- 1 ## use n <- 2 for better results

## isotropic model
model <- RMexp()
x <- seq(0, 10, 0.02)
z <- RFsimulate(model, x=x, n=n)
emp.vario <- RFvariogram(data=z)
plot(emp.vario, model=model)


## anisotropic model
model <- RMexp(Aniso=cbind(c(2,1), c(1,1)))
x <- seq(0, 10, 0.05)
z <- RFsimulate(model, x=x, y=x, n=n)
emp.vario <- RFvariogram(data=z, phi=4)
plot(emp.vario, model=model)


## space-time model
model <- RMnsst(phi=RMexp(), psi=RMfbm(alpha=1), delta=2)
x <- seq(0, 10, 0.05)
T <- c(0, 0.1, 100)
z <- RFsimulate(x=x, T=T, model=model, n=n)
emp.vario <- RFvariogram(data=z, deltaT=c(10, 1))
plot(emp.vario, model=model, nmax.T=3)


## multivariate model
model <- RMbiwm(nudiag=c(1, 2), nured=1, rhored=1, cdiag=c(1, 5), 
                s=c(1, 1, 2))
x <- seq(0, 20, 0.1)
z <- RFsimulate(model, x=x, y=x, n=n)
emp.vario <- RFvariogram(data=z)
plot(emp.vario, model=model)


## multivariate and anisotropic model
model <- RMbiwm(A=matrix(c(1,1,1,2), nc=2),
                nudiag=c(0.5,2), s=c(3, 1, 2), c=c(1, 0, 1))
x <- seq(0, 20, 0.1)
dta <- RFsimulate(model, x, x, n=n)
ev <- RFvariogram(data=dta, phi=4)
plot(ev, model=model, boundaries=FALSE)

RandomFields documentation built on Jan. 19, 2022, 1:06 a.m.