RFpseudovariogram: Pseudovariogram

Description Usage Arguments Details Value References See Also Examples

View source: R/rf.R

Description

Calculates the theoretical and empirical Pseudovariogram.

Usage

1
2
3
RFpseudovariogram(model, x, y=NULL, z = NULL, T=NULL, grid, params, distances,
            dim, ..., data, bin=NULL, phi=NULL, theta = NULL,
            deltaT = NULL, vdim=NULL)

Arguments

model,params \argModel
x \argX
y,z \argYz
T \argT
grid \argGrid
distances,dim \argDistances
... \argDots
data \argData
bin \argBin
phi \argPhi
theta \argTheta
deltaT \argDeltaT
vdim \argVdim

Details

RFpseudovariogram computes the empirical pseudovariogram for given (multivariate) spatial data.

The spatial coordinates x, y, z should be vectors. For random fields of spatial dimension d > 3 write all vectors as columns of matrix x. In this case do neither use y, nor z and write the columns in gridtriple notation.

If the data is spatially located on a grid a fast algorithm based on the fast Fourier transformed (fft) will be used. As advanced option the calculation method can also be changed for grid data (see RFoptions.)

Value

an objects of class RFempVariog.

References

Gelfand, A. E., Diggle, P., Fuentes, M. and Guttorp, P. (eds.) (2010) Handbook of Spatial Statistics. Boca Raton: Chapman & Hall/CRL.

Stein, M. L. (1999) Interpolation of Spatial Data. New York: Springer-Verlag

See Also

RMstable, RMmodel, RFsimulate, RFfit, RFcov, RFmadogram. RFvariogram,

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
##                   RFoptions(seed=NA) to make them all random again


model <- RMbiwm(nudiag=c(1, 2), nured=1, rhored=1, cdiag=c(1, 5), 
                s=c(1, 1, 2))
x <- seq(0, 20, 0.1)
z <- RFsimulate(model, x=x, y=x, n=2)
emp.vario <- RFpseudovariogram(data=z)
plot(emp.vario, model=model)

RandomFields documentation built on Jan. 19, 2022, 1:06 a.m.