Description Usage Arguments Details Value References See Also Examples
Calculates the theoretical and empirical Pseudovariogram.
1 2 3 |
model,params |
\argModel |
x |
\argX |
y,z |
\argYz |
T |
\argT |
grid |
\argGrid |
distances,dim |
\argDistances |
... |
\argDots |
data |
\argData |
bin |
\argBin |
phi |
\argPhi |
theta |
\argTheta |
deltaT |
\argDeltaT |
vdim |
\argVdim |
RFpseudovariogram
computes the empirical
pseudovariogram for given (multivariate) spatial data.
The spatial coordinates x
, y
, z
should be vectors. For random fields of
spatial dimension d > 3 write all vectors as columns of matrix x. In
this case do neither use y, nor z and write the columns in
gridtriple
notation.
If the data is spatially located on a grid a fast algorithm based on
the fast Fourier transformed (fft) will be used.
As advanced option the calculation method can also be changed for grid
data (see RFoptions
.)
an objects of class
RFempVariog
.
Gelfand, A. E., Diggle, P., Fuentes, M. and Guttorp, P. (eds.) (2010) Handbook of Spatial Statistics. Boca Raton: Chapman & Hall/CRL.
Stein, M. L. (1999) Interpolation of Spatial Data. New York: Springer-Verlag
RMstable
,
RMmodel
,
RFsimulate
,
RFfit
,
RFcov
,
RFmadogram
.
RFvariogram
,
1 2 3 4 5 6 7 8 9 10 | RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
## RFoptions(seed=NA) to make them all random again
model <- RMbiwm(nudiag=c(1, 2), nured=1, rhored=1, cdiag=c(1, 5),
s=c(1, 1, 2))
x <- seq(0, 20, 0.1)
z <- RFsimulate(model, x=x, y=x, n=2)
emp.vario <- RFpseudovariogram(data=z)
plot(emp.vario, model=model)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.