R/rf.R

Defines functions RFoptions rfDoSimulate RFcalc RFfctn RFpseudomadogram RFmadogram RFpseudovariogram extractVal RFcovmatrix RFcov rfeval RFrdistr RFqdistr RFpdistr RFddistr RFdistr rfdistr rfInit warn.seed.not.na RFlikelihood initRFlikelihood ReplaceC AnyIsNA SplitC splittingC SetDimension GetDimension setvector RFlinearpart RFboxcox

Documented in RFboxcox RFcalc RFcov RFcovmatrix RFddistr RFdistr RFfctn RFlikelihood RFlinearpart RFmadogram RFoptions RFpdistr RFpseudomadogram RFpseudovariogram RFqdistr RFrdistr

## Authors 
## Martin Schlather, schlather@math.uni-mannheim.de
##
##
## Copyright (C) 2015 -- 2017 Martin Schlather
##
## This program is free software; you can redistribute it and/or
## modify it under the terms of the GNU General Public License
## as published by the Free Software Foundation; either version 3
## of the License, or (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program; if not, write to the Free Software
## Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.  

# source("rf.R")
# see getNset.R for the variable .methods



RFboxcox <- function(data, boxcox, vdim=1, inverse=FALSE, ignore.na=FALSE) {
  if (missing(boxcox)) boxcox <- .Call(C_get_boxcox)
  if (any(is.na(boxcox)) && !ignore.na)
    stop("non-finte values in Box-Cox transformation")
  if (!all(is.finite(boxcox))) return(data)
  if (is.list(data)) {
    for (i in 1:length(data))
      data[[i]] <- RFboxcox(data[[i]], boxcox=boxcox, vdim=vdim,
                            inverse=inverse, ignore.na=ignore.na)
    return(data)
  }
  Data <- data + 0
  .Call(C_BoxCox_trafo, as.double(boxcox), as.double(Data), as.integer(vdim),
        as.logical(inverse));
  return(Data)
}


RFlinearpart <- function(model, x, y = NULL, z = NULL, T=NULL, grid=NULL,
                         data, params,  distances, dim, set=0, ...) {
  Reg <- MODEL_USER  
  RFoptOld <- internal.rfoptions(..., RELAX=is(model, "formula"))
  on.exit(RFoptions(LIST=RFoptOld[[1]]))
  RFopt <- RFoptOld[[2]]

  model <- list("linearpart", PrepareModel2(model, params=params, ...))

  rfInit(model=model, x=x, y=y, z=z, T=T, grid=grid,
         distances=distances, dim=dim, reg = Reg, RFopt=RFopt)

  .Call(C_get_linearpart, Reg, as.integer(set))
}



setvector <- function(model, preceding, len, factor) {
  if (model[[1]] == SYMBOL_PLUS) {
    return(c(SYMBOL_PLUS,
             lapply(model[-1], setvector, preceding=preceding, len=len,
                    factor=factor)))
  }
  if (found <- model[[1]] == R_C) {
    if (length(model) != len + 1) stop("bug")
    model <- c(model[1], rep(0, preceding), model[-1])
    if (!missing(factor)) model <- list(SYMBOL_MULT, model, factor)
  } else if (found <- model[[1]] == R_CONST) {
    if (length(model[[1]]) != len) stop("bug")
    model[[2]] <- c(rep(0, preceding), model[[2]])
    if (!missing(factor)) model <- list(SYMBOL_MULT, model, factor)
  } else if (model[[1]] == SYMBOL_MULT) {
    for (i in 2:length(model)) {
      if (found <- model[[i]][[1]]==R_C) {
        if (length(model[[i]]) != len + 1) stop("bug")
        model[[i]] <- c(R_C, rep(0, preceding), model[[i]][-1])
        if (!missing(factor)) model[[length(model) + 1]] <- factor
        break
      }      
    }
  }
  if (!found) {
    bind <- c(list(R_C), rep(0, preceding), rep(1, len))
    splittingC <- function(model, preceding, factor) {
      const <- sapply(model[-1],
                      function(m) (is.numeric(m) && !is.na(m)) ||
                                  (m[[1]] == R_CONST && !is.na(m[[2]]))
                      )
      if (all(const)) {
        model <- c(model[1], if (preceding > 0) rep(0, preceding), model[-1])
        return(list(SYMBOL_MULT, model, if (!missing(factor)) list(factor)))
      }
      for (i in 2:length(model)) {
        vdim <- preceding + (if (i==2) 0 else GetDimension(model[[i-1]]))
        m  <- ReplaceC(model[[i]])
        L <- GetDimension(m)
        model[[i]] <- setvector(m, preceding = vdim, len = L, factor=factor)
      }
      model[[1]] <- SYMBOL_PLUS
      names(model) <- NULL
      L <- GetDimension(model[[length(model)]])
      model <- SetDimension(model, L)
    }


    if (model[[1]] == SYMBOL_MULT)
      model <- c(SYMBOL_MULT, list(bind), model[-1])
    else model <- list(SYMBOL_MULT, bind, model)
    if (!missing(factor)) model[[length(model) + 1]] <- factor
  }
  return(model)
}


GetDimension <- function(model){
  if (model[[1]] == SYMBOL_PLUS) return(max(sapply(model[-1], GetDimension)))
  if (model[[1]] == R_C) return(length(model) - 1)
  if (model[[1]] == R_CONST) return(length(model[[2]]))
  if (model[[1]] == SYMBOL_MULT) 
    return(max(sapply(model, function(m) if (m[[1]]==R_C) length(m)-1 else 1)))
  return(1)
}


SetDimension <- function(model, L){
  if (model[[1]] == SYMBOL_PLUS) {
    return(c(SYMBOL_PLUS, lapply(model[-1], SetDimension, L=L)))
  }
  if (model[[1]] == R_C) {
    if (length(model) <= L) for (i in length(model) : L) model[[i+1]] <- 0
    names(model) <- c("", letters[1:L])
  } else if (model[[1]] == R_CONST) {
    if (length(model[[2]]) < L)
      model[[2]] <- c(model[[2]], rep(0, L - length(model[[2]])))
  } else if (model[[1]] == SYMBOL_MULT) {
    for (i in 2:length(model)) {
      if (model[[i]][[1]]==R_C) {
        if (length(model[[i]]) <= L)
          for (j in length(model[[i]]) : L) model[[i]][[j+1]] <- 0
        names(model[[i]]) <- c("", letters[1:L])
      }
    }
  }
  return(model)
}


splittingC <- function(model, preceding, factor) {
  const <- sapply(model[-1],
                  function(m) {
		    ((is.numeric(m) || is.logical(m)) && !is.na(m)) ||
                      (is.list(m) && m[[1]] == R_CONST && !is.na(m[[2]]))
		  })
  if (all(const)) {
    model <- c(model[1], if (preceding > 0) rep(0, preceding), model[-1])
    return(list(SYMBOL_MULT, model, if (!missing(factor)) list(factor)))
  }
  for (i in 2:length(model)) {
    vdim <- preceding + (if (i==2) 0 else GetDimension(model[[i-1]]))
    m <- model[[i]]
    if (is.list(m)) {
      m  <- ReplaceC(m)
      L <- GetDimension(m)
    } else if (is.numeric(m) || is.logical(m)) {
      L <- length(m)
      if (L ==1 && is.na(m)) {
	m <- list(SYMBOL_MULT, list(R_CONST, a=m)) 
      } else {
	m <- list(R_CONST, m)
      }
    } else stop(m, "not allowed")
    model[[i]] <- setvector(m, preceding = vdim, len = L, factor=factor)
  }
  model[[1]] <- SYMBOL_PLUS
  names(model) <- NULL
  L <- GetDimension(model[[length(model)]])
  model <- SetDimension(model, L)
}


SplitC <- function(model, factor) {
  model <- splittingC(model, 0, factor)
  L <- GetDimension(model)
  return(SetDimension(model, L))
}



AnyIsNA <- function(model) {
  if (is.list(model)) {
    for (i in 1:length(model)) if (AnyIsNA(model[[i]])) return(TRUE)
    return(FALSE)
  } else return((is.numeric(model) || is.logical(model)) && any(is.na(model)))
}


##RReplaceC <-
ReplaceC <- function(model) {
  if (model[[1]] == SYMBOL_PLUS) {
    for (i in 2:length(model)) model[[i]] <- ReplaceC(model[[i]])
  } else if (model[[1]] == SYMBOL_MULT) {
    if (length(model) <= 2) {
      stop("here, products must have at least 2 factors")
    }
    cs <- sapply(model, function(m) m[[1]] == R_C)
    s <- sum(cs)
    if (s > 0) {
      if (s > 1)
        stop("multiplication with '", R_C, "' may happen only once")
      cs <- which(cs)
      C <- model[[cs]]      
      if (!AnyIsNA(model[-cs])) {
        return(SplitC(C, factor=model[-cs]))
      }
    }      
  } else if (model[[1]] == R_C) {
    return(SplitC(model))
  }
  return(model)
}


initRFlikelihood <- function(model, x, y = NULL, z = NULL, T=NULL, grid=NULL,
                             data, params, distances, dim, likelihood,
                             estimate_variance = NA,
                              Reg, ignore.trend=FALSE, ...) {

  if (!missing(likelihood)) ## composite likelihood etc
    stop("argument 'likelihood' is a future feature, not programmed yet")


  model <- PrepareModel2(model, params=params, ...)
  model <- ReplaceC(model); ## multivariates c() aufdroeseln
  
  model <- list("loglikelihood", model, data = data,
                estimate_variance=estimate_variance,
                betas_separate = FALSE, ignore_trend=ignore.trend)

  rfInit(model=model, x=x, y=y, z=z, T=T, grid=grid,
         distances=distances, dim=dim, reg = Reg,
         RFopt=RFoptions(SAVEOPTIONS=NULL))

}


RFlikelihood <- function(model, x, y = NULL, z = NULL, T=NULL, grid=NULL,
                         data, params, distances, dim, likelihood,
                         estimate_variance = NA,
                         ...) {
  relax <- is(model, "formula")
  RFoptOld <-
    if (missing(likelihood)) internal.rfoptions(..., RELAX=relax)
    else internal.rfoptions(likelihood=likelihood, ..., RELAX=relax)
  on.exit(RFoptions(LIST=RFoptOld[[1]]))
  RFopt <- RFoptOld[[2]]
  Reg <- RFopt$register$likelihood_register

  initRFlikelihood(model=model, x=x, y = y, z = z, T=T, grid=grid,
                   data=data, params=params,
                   distances=distances, dim=dim, likelihood=likelihood,
                   estimate_variance = estimate_variance,
                   Reg = Reg, ...)  

  likeli <- .Call(C_EvaluateModel, double(0),  Reg)
  info <- .Call(C_get_likeliinfo, Reg)
  globalvariance <- info$estimate_variance
  where <- 1 + globalvariance
  param <- likeli[-1:-where]
  if (length(param) > 0) names(param) <- info$betanames

  return(list(loglikelihood = likeli[1], likelihood = exp(likeli[1]),
              global.variance = if (globalvariance) likeli[where] else NULL,
              parameters = param
              )
         )
}


warn.seed.not.na <- function(RFoptOld, oldstyle=FALSE) {
  RFopt <- RFoptOld[[2]]
  basic <- RFopt$basic
  if (!is.na(basic$seed)){  
    o.seed <- RFoptOld[[1]]$basic$seed
    allequal <- all.equal(o.seed, basic$seed)
    allequal <- is.logical(allequal) && allequal
    if (basic$printlevel >= PL_IMPORTANT &&
        (is.null(o.seed) || (!is.na(o.seed) && allequal)
         )
        ) {
      if (RFopt$internal$warn_seed) {
         RFoptions(internal.warn_seed = FALSE)
         txt <- "\nSet 'RFoptions(seed=NA)' to make the seed arbitrary."
      } else txt <- ""
      message("NOTE: simulation is performed with fixed random seed ",
               basic$seed, ".", txt)
    }
    if (oldstyle) {
      warning("Fixed seeds in the old style result in a different behaviour of R itself! While in the old style, the state of .Random.seed is influenced for fixed seed, it is not in the new style. The user is urged to switch to the new style.")
    }
  }
}


rfInit <- function(model, x, y = NULL, z = NULL, T=NULL, grid=FALSE,
                   distances, dim, reg, RFopt, y.ok=TRUE) { 
  stopifnot(xor(missing(x), #|| length(x)==0,
                missing(distances) || length(distances)==0))  
  if (!is.na(RFopt$basic$seed)) set.seed(RFopt$basic$seed)    
  new <- C_UnifyXT(x, y, z, T, grid=grid, distances=distances, dim=dim,
                   y.ok=y.ok)
  .Call(C_Init, as.integer(reg), model, new, NAOK=TRUE) # return vdim
}


rfdistr <- function(model, x, q, p, n, params, dim=1, ...) {
  ## note: * if x is a matrix, the points are expected to be given row-wise
  ##       * if not anisotropic Covariance expects distances as values of x
  ##
  ## here, in contrast to Covariance, nonstatCovMatrix needs only x

  RFoptOld <- internal.rfoptions(..., RELAX=is(model, "formula"))
  on.exit(RFoptions(LIST=RFoptOld[[1]]))
  RFopt <- RFoptOld[[2]]

  if (!missing(n) && n>10 && RFopt$internal$examples_reduced) {
    message("number of simulations reduced")
    n <- 10
  }
    
  model<- list("Distr", PrepareModel2(model, params=params, ...),
               dim=as.integer(dim));
  if (!missing(x)) {
    model$x <- if (is.matrix(x)) t(x) else x
  }
  if (!missing(q)) {
    model$q <- if (is.matrix(q)) t(q) else q
  }
  if (!missing(p)) {
    model$p <- if (is.matrix(p)) t(p) else p
  }
  if (!missing(n)) {
    if (exists(".Random.seed") && !is.na(RFopt$basic$seed)) {
      .old.seed <- .Random.seed; on.exit(set.seed(.old.seed), add = TRUE) }
    model$n <- n
  }

  rfInit(model=model, x=matrix(0, ncol=dim, nrow=1),
         y=NULL, z=NULL, T=NULL, grid=FALSE, reg = MODEL_DISTR, RFopt=RFopt)
  res <-  .Call(C_EvaluateModel, double(0), as.integer(MODEL_DISTR))

  if (RFoptOld[[2]]$general$returncall) attr(res, "call") <-
    as.character(deparse(match.call(call=sys.call(sys.parent()))))
  attr(res, "coord_system") <- c(orig=RFoptOld[[2]]$coords$coord_system,
                                 model=RFoptOld[[2]]$coords$new_coord_system)
  return(res)
}

RFdistr <- function(model, x, q, p, n, params, dim=1, ...) {
   rfdistr(model=model, x=x, q=q, p=p, n=n, params=params, dim=dim, ...)
}
RFddistr <- function(model, x, params, dim=1, ...) {
  if (hasArg("q") || hasArg("p") || hasArg("n")) stop("unknown argument(s)");
  rfdistr(model=model, x=x, params=params, dim=dim, ...)
}
RFpdistr <- function(model, q, params, dim=1, ...) {
  if (hasArg("x") || hasArg("p") || hasArg("n")) stop("unknown argument(s)");
  rfdistr(model=model, q=q, params=params, dim=dim, ...)
}
RFqdistr <- function(model, p, params, dim=1, ...){
  if (hasArg("x") || hasArg("q") || hasArg("n")) stop("unknown argument(s)");
  rfdistr(model=model, p=p, params=params, dim=dim, ...)
}
RFrdistr <- function(model, n, params, dim=1, ...) {
  if (hasArg("x") || hasArg("q") || hasArg("p")) stop("unknown argument(s)");
  rfdistr(model=model, n=n, params=params, dim=dim, ...)
}




rfeval <- function(model, x, y = NULL, z = NULL, T=NULL, grid=NULL,
                  params, distances, dim, ..., 
                  ##                  dim = ifelse(is.matrix(x), ncol(x), 1),
                  fctcall=c("Cov", "CovMatrix", "Variogram",
                    "Pseudovariogram", "Fctn"), reg=MODEL_USER) {

  ## note: * if x is a matrix, the points are expected to be given row-wise
  ##       * if not anisotropic Covariance expects distances as values of x
  ##
  ## here, in contrast to Covariance, nonstatCovMatrix needs only x



  RFoptOld <-internal.rfoptions(#xyz_notation=2*(length(y)!=0 && !is.matrix(y)),
				..., RELAX=is(model, "formula"))
  on.exit(RFoptions(LIST=RFoptOld[[1]]))
  
  fctcall <- match.arg(fctcall)

  if (fctcall != "CovMatrix" && !missing(distances) && !is.null(distances)) {
    if(missing(dim) || length(dim) != 1) {
      warning("'dim' not given or not of length 1, hence set to 1");
      dim <- 1
    }
    if (length(y) != 0 || length(z) != 0 || length(T) != 0 ||
        (!missing(grid) && length(grid) != 0))
      stop("if distances are given 'y', 'z', 'T', 'grid' may not be given")
    x <- (if (is.matrix(distances)) distances else
          cbind(distances, matrix(0, nrow=length(distances), ncol = dim - 1)))
    distances <- NULL
    dim <- NULL
    grid <- FALSE
  }
  
  p <- list(fctcall, PrepareModel2(model, params=params, ...))
  rfInit(model=p, x=x, y=y, z=z, T=T, grid=grid,
         distances=distances, dim=dim, reg = reg, RFopt=RFoptOld[[2]])
  res <- .Call(C_EvaluateModel, double(0), as.integer(reg))
  
  if (RFoptOld[[2]]$general$returncall) attr(res, "call") <-
    as.character(deparse(match.call(call=sys.call(sys.parent()))))
  attr(res, "coord_system") <- .Call(C_GetCoordSystem, reg,
              RFoptOld[[2]]$coords$coord_system,
              RFoptOld[[2]]$coords$new_coord_system)
   return(res)
}


RFcov <- function(model, x, y = NULL, z = NULL, T=NULL, grid,
		  params, distances, dim, ...,
		  data, bin=NULL, phi=NULL, theta = NULL,
		  deltaT = NULL, vdim=NULL) {
  if (hasArg("data")) {
    if (hasArg("model")) {
      stop("If both model and data are given, a least square fit will be performed soon")
    } else {
      rfempirical(x=x, y=y, z=z, T=T, data=data, grid=grid, bin=bin,
			   phi=phi, theta=theta, deltaT=deltaT, vdim=vdim,
			   method=METHOD_COVARIANCE, ...)
    }
  } else rfeval(model=model, x=x, y=y, z=z, T=T, grid=grid, params=params,
                distances=distances, dim=dim, ..., fctcall="Cov",
                reg=MODEL_COV)
}


RFcovmatrix <- function(model, x, y = NULL, z = NULL, T=NULL, grid,
                        params, distances, dim,  ...) {  
  rfeval(model=model, x=x, y=y, z=z, T=T, grid=grid, 
         distances=distances, dim=dim, params=params, ..., fctcall="CovMatrix",
         reg=MODEL_COVMATRIX)
}


extractVal <- function(L, val) {
  ans <- NULL
  for (i in 1:length(L)) {
    p <- L[[i]]
    if (is.list(p)) ans <- c(ans, extractVal(L, val))
    else if (is.numeric(p)) {
      for (j in 1:length(p)) {
        q <- pmatch(p[j], val)
        if (!is.na(q)) ans <- c(ans, q)
      }
    } ## else string -- does not matter 
  }
  return (ans)
}


RFvariogram <- function (model, x, y=NULL, z = NULL, T=NULL, grid,
			 params, distances, dim, ...,
			 data, bin=NULL, phi=NULL, theta = NULL,
			 deltaT = NULL, vdim=NULL){
  if (hasArg("data")) {
    if (hasArg("model")) {
      stop("If both model and data are given, a least square fit will be performed soon")
    } else {
      rfempirical(x=x, y=y, z=z, T=T, data=data, grid=grid, bin=bin,
			   phi=phi, theta=theta, deltaT=deltaT, vdim=vdim,
			   method=METHOD_VARIOGRAM, ...)
    }
  } else rfeval(model=model, x=x, y=y, z=z, T=T, grid=grid, params=params,
                distances=distances, dim=dim, ..., fctcall="Variogram",
                reg=MODEL_VARIOGRAM)
}

RFpseudovariogram <- function(model, x, y=NULL,  z = NULL, T=NULL, grid,
			      params, distances, dim, ...,
			      data, bin=NULL, phi=NULL, theta = NULL,
			      deltaT = NULL, vdim=NULL){
   if (hasArg("data")) {
    if (hasArg("model")) {
      stop("If model and data are given, a least square fit will be performed soon")
    } else {
      rfempirical(x=x, y=y, z=z, T=T, data=data, grid=grid, bin=bin,
			   phi=phi, theta=theta, deltaT=deltaT, vdim=vdim,
			   method=METHOD_PSEUDO, ...)
    }
   } else rfeval(model=model, x=x, y=y, z=z, T=T, grid=grid, params=params,
                distances=distances, dim=dim, ..., fctcall="Pseudovariogram",
                reg=MODEL_PSEUDO)
}

RFmadogram <- function(model, x, y=NULL,  z = NULL, T=NULL, grid, params,
			      distances, dim, ...,
			      data, bin=NULL, phi=NULL, theta = NULL,
			      deltaT = NULL, vdim=NULL){
   if (hasArg("data")) {
    if (hasArg("model")) {
      stop("If model and data are given, a least square fit will be performed soon")
    } else {
      rfempirical(x=x, y=y, z=z, T=T, data=data, grid=grid, bin=bin,
			   phi=phi, theta=theta, deltaT=deltaT, vdim=vdim,
			   method=METHOD_MADOGRAM, ...)
    }
  }  else stop("theoretical values for madograms cannot be calculated yet")
}

RFpseudomadogram <- function(model, x, y=NULL,  z = NULL, T=NULL, grid,
			      params, distances, dim, ...,
			      data, bin=NULL, phi=NULL, theta = NULL,
			      deltaT = NULL, vdim=NULL){
   if (hasArg("data")) {
    if (hasArg("model")) {
      stop("If model and data are given, a least square fit will be performed soon")
    } else {
      rfempirical(x=x, y=y, z=z, T=T, data=data, grid=grid, bin=bin,
		  phi=phi, theta=theta, deltaT=deltaT, vdim=vdim,
		  method=METHOD_PSEUDOMADOGRAM, ...)
    }
  }  else stop("theoretical values for madograms cannot be calculated yet")
}


RFfctn <- function(model, x, y=NULL,  z = NULL, T=NULL, grid,
                   params, distances, dim, ...) {
  rfeval(model=model, x=x, y=y, z=z, T=T, grid=grid, params=params,
                distances=distances, dim=dim, ..., fctcall="Fctn",
                reg=MODEL_FCTN )
}

RFcalc <- function(model, params, ...) {
  if (is.numeric(model)) return(model)
  rfeval(model=model, x=0, params=params, ...,
         coord_system="cartesian", new_coord_system="keep", spConform = FALSE,
         fctcall="Fctn",reg=MODEL_CALC)
}


######################################################################
######################################################################


rfDoSimulate <- function(n = 1, reg, spConform) {
  stopifnot(length(n) == 1, n>0, is.finite(n))
  RFopt <- RFoptions()
  if (missing(spConform)) spConform <- RFopt$general$spConform

  if (RFopt$gauss$paired && (n %% 2 != 0))
    stop("if paired, then n must be an even number")

  info <- RFgetModelInfo(RFopt$registers$register, level=3)

  vdim <- info$vdim
  total <- info$loc$totpts
  if (is.null(total) || total <= 0)
    stop("register ", RFopt$registers$register, " does not look initialized")

  result <- .Call(C_EvaluateModel, as.double(n), as.integer(reg)) #userdefined,
  if (!spConform) return(result)
  
  prep <- prepare4RFspDataFrame(info=info, RFopt=RFopt) 
  ## attributes(result)$varnames <- extractVarNames(model)  #prep$names$varnames
  
  res2 <- conventional2RFspDataFrame(result,
                                     coords=prep$coords,
                                     gridTopology=prep$gridTopology,
                                     n=n,
                                     vdim=info$vdim,
                                     T=info$loc$T,
                                     vdim_close_together
                                     =RFopt$general$vdim_close_together)
  return(res2)
}

    
#RFsimulateXX <- function() return(.Call(C_EvaluateModelXX))
    

    
RFsimulate <- function (model, x, y = NULL, z = NULL, T = NULL, grid=NULL,
                        distances, dim, data, given = NULL, err.model,
                        params, err.params, n = 1, ...) {
  if (!missing(model) && is(model, "RFfit"))
    stop("To continue with the output of 'RFfit' use 'predict' or give the components separately")
  mc <- as.character(deparse(match.call()))

### preparations #########################################################  
  if (!missing(distances) && length(distances)  > 0)
    RFoptOld <- internal.rfoptions(xyz_notation=length(y)!=0,
                                   expected_number_simu=n, ..., 
                                   general.spConform = FALSE,
                                   RELAX=!missing(model) && is(model,"formula"))
  else 
    RFoptOld <- internal.rfoptions(xyz_notation=length(y)!=0,
                                   expected_number_simu=n, ...,
                                   RELAX=!missing(model) && is(model,"formula"))
  
  on.exit(RFoptions(LIST=RFoptOld[[1]]))
  RFopt <- RFoptOld[[2]]

  if (n>2 && RFopt$internal$examples_reduced) {
    message("number of simulations reduced")
    n <- 2
  }

  
  cond.simu <- !missing(data) && !is.null(data) 
  reg <- RFopt$registers$register

  ### simulate from stored register ########################################
  mcall <- as.list(match.call(expand.dots=FALSE))
  if (length(mcall)==1 ||
      length(mcall)==2 && !is.null(mcall$n) ||
      length(mcall)==3 && !is.null(mcall$n) && "..." %in% names(mcall)) {
    if (cond.simu) {
      stop("repeated performance of conditional simulation not programmed yet")
    } else {
      ## userdefined <- GetParameterModelUser(PrepareModel2(model, params=params, ...))
      res <- rfDoSimulate(n=n, reg=reg, spConform=RFopt$general$spConform
                          #userdefined=userdefined
                          )
      if (RFopt$general$returncall) attr(res, "call") <- mc
      attr(res, "coord_system") <- .Call(C_GetCoordSystem, reg,
                                     RFopt$coords$coord_system,
                                     RFopt$coords$new_coord_system)
      return(res)
    }
  }

  ### preparations #########################################################
  stopifnot(!missing(model) && !is.null(model))

  model.orig <- model

  model <- PrepareModel2(model, params=params, ...)
  err.model <-
    if (missing(err.model)) NULL
    else PrepareModel2(err.model, params=err.params, ...)

   ### conditional simulation ###############################################
  if (cond.simu) {
    if (isSpObj(data)) data <- sp2RF(data)
    stopifnot(missing(distances) || is.null(distances))
    res <- switch(GetProcessType(model),
                  RPgauss = 
                  rfCondGauss(model=model.orig, x=x, y=y, z=z, T=T,
                              grid=grid, n=n, data=data, given=given,
                              err.model=err.model,
                              ## next line to make sure that this part
                              ## matches with predictGauss
                              predict_register = MODEL_PREDICT,
                              ...),
                  stop(GetProcessType(model),
                       ": conditional simulation of the process not programmed yet")
                  )
  } else { ## unconditional simulation ####
    if(!is.null(err.model))
      warning("error model is unused in unconditional simulation")
    warn.seed.not.na(RFoptOld)
    if (exists(".Random.seed") && !is.na(RFopt$basic$seed)) {
      .old.seed <- .Random.seed; on.exit(set.seed(.old.seed), add = TRUE) }

    rfInit(model=list("Simulate",
                      setseed=eval(parse(text="quote(set.seed(seed=seed))")),
                      env=.GlobalEnv, model), x=x, y=y, z=z, T=T,
           grid=grid, distances=distances, dim=dim, reg=reg, RFopt=RFopt,
           y.ok = FALSE)
    if (n < 1) return(NULL)
    res <- rfDoSimulate(n=n, reg=reg, spConform=FALSE)
  } # end of uncond simu

  ## output: RFsp   #################################
  if ((!cond.simu || (!missing(x) && length(x) != 0)) ## not imputing
      && RFopt$general$spConform) {
    info <- RFgetModelInfo(if (cond.simu) MODEL_PREDICT else reg, level=3)
    if (length(res) > 1e7) {
      message("Too big data set (more than 1e7 entries) to allow for 'spConform=TRUE'. So the data are returned as if 'spConform=FALSE'")
      return(res)
    }
    
    prep <- prepare4RFspDataFrame(info, RFopt, x, y, z, T, grid,
				  coordnames = attributes(res)$coordnames)
    attributes(res)$varnames <- attributes(res)$varnames
    
    
    res <- conventional2RFspDataFrame(data=res, coords=prep$coords,
                                      gridTopology=prep$gridTopology,
                                      n=n,
                                      vdim=info$vdim,
                                      T=info$loc$T,
                                      vdim_close_together=
                                      RFopt$general$vdim_close_together)
    if (is.raster(x)) {
      res <- raster::raster(res)
      raster::projection(res) <- raster::projection(x)
    }
  }

   
  if (RFopt$general$returncall) attr(res, "call") <- mc
  attr(res, "coord_system") <- .Call(C_GetCoordSystem,
                                     as.integer(reg),
                                     RFopt$coords$coord_system,
                                     RFopt$coords$new_coord_system)
  return(res)
}

					# RFreplace <- function(model, by) { }


RFoptions <- function(...) RandomFieldsUtils::RFoptions(...)

Try the RandomFields package in your browser

Any scripts or data that you put into this service are public.

RandomFields documentation built on Jan. 19, 2022, 1:06 a.m.