RMexponential: Exponential operator

Description Usage Arguments Details Value References See Also Examples

View source: R/RMmodels.R

Description

RMexponential yields a covariance model from a given variogram or covariance model. The covariance C is given as

C(h) = (\exp(φ(h)) -∑_{k=0}^n φ^k(h)/k!) / (\exp(φ(0)) -∑_{k=0}^n φ^k(0)/k!)

if φ is a covariance model, and as

C(h) = \exp(-φ(h))

if φ is a variogram model.

Usage

1
RMexponential(phi, n, standardised, var, scale, Aniso, proj)

Arguments

phi

a valid RMmodel; either a variogram model or a covariance model

n

integer, see formula above. Default is -1; if the multivariate dimension of the submodel is greater than 1 then only the default value is valid.

standardised

logical. If TRUE then the above formula holds. If FALSE then only the nominator of the above formula is returned. Default value is TRUE.

var,scale,Aniso,proj

optional arguments; same meaning for any RMmodel. If not passed, the above covariance function remains unmodified.

Details

If γ is a variogram, then \exp(-γ) is a valid covariance.

Value

RMexponential returns an object of class RMmodel.

References

See, for instance,

See Also

RMmodel, RFsimulate, RFfit.

Examples

1
2
3
4
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
##                   RFoptions(seed=NA) to make them all random again
model <- RMexponential(RMfbm(alpha=1))  ## identical to RMexp()
plot(RMexp(), model=model, type=c("p", "l"), pch=20) 

RandomFields documentation built on Jan. 19, 2022, 1:06 a.m.