Description Usage Arguments Details Value References See Also Examples
RMhyperbolic
is a stationary isotropic covariance model
called “generalized hyperbolic”.
The corresponding covariance function only depends on the distance
r ≥ 0 between two points and is given by
C(r) = δ^(-ν) (K_ν(ν δ))^{-1} (δ^2+r^2)^{ν/2} K_ν(ξ(δ^2+r^2)^{1/2})
where K_ν denotes the modified Bessel function of second kind.
1 | RMhyperbolic(nu, lambda, delta, var, scale, Aniso, proj)
|
nu, lambda, delta |
numerical values; should either satisfy |
var,scale,Aniso,proj |
optional arguments; same meaning for any
|
This class is over-parametrized, i.e. it can be reparametrized by replacing the three parameters λ, δ and scale by two other parameters. This means that the representation is not unique.
Each generalized hyperbolic covariance function is a normal scale mixture.
The model contains some other classes as special cases;
for λ = 0 we get the Cauchy covariance function
(see RMcauchy
) with γ = -ν/2 and scale=δ;
the choice δ = 0 yields a covariance model of type
RMwhittle
with smoothness parameter ν
and scale parameter 1/λ.
RMhyperbolic
returns an object of class RMmodel
.
Shkarofsky, I.P. (1968) Generalized turbulence space-correlation and wave-number spectrum-function pairs. Can. J. Phys. 46, 2133-2153.
Barndorff-Nielsen, O. (1978) Hyperbolic distributions and distributions on hyperbolae. Scand. J. Statist. 5, 151-157.
Gneiting, T. (1997). Normal scale mixtures and dual probability densities. J. Stat. Comput. Simul. 59, 375-384.
RMcauchy
,
RMwhittle
,
RMmodel
,
RFsimulate
,
RFfit
.
1 2 3 4 5 6 7 | RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
## RFoptions(seed=NA) to make them all random again
model <- RMhyperbolic(nu=1, lambda=2, delta=0.2)
x <- seq(0, 10, 0.02)
plot(model)
plot(RFsimulate(model, x=x))
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.