RMmqam: multivariate quasi-arithmetic mean

Description Usage Arguments Details Value References See Also Examples

View source: R/RMmodels.R

Description

RMmqam is a multivariate stationary covariance model depending on a submodel phi such that psi( . ) := phi(sqrt( . )) is completely monotone, and depending on further stationary covariance models C_i. The covariance is given by

C_{ij}(h) = φ(√(θ_i (φ^{-1}(C_i(h)))^2 + θ_j (φ^{-1}(C_j(h)))^2 ))

where φ is a completely monotone function, C_i are suitable covariance functions and θ_i≥0 such that ∑_i θ_i=1.

Usage

1
RMmqam(phi, C1, C2, C3, C4, C5, C6, C7, C8, C9, theta, var, scale, Aniso, proj)

Arguments

phi

a valid covariance RMmodel that is a normal scale mixture. See, for instance,
RFgetModelNames(monotone="normal mixture")

C1, C2, C3, C4, C5, C6, C7, C8, C9

optional further stationary RMmodels

theta

is a vector of values in [0,1], summing up to 1.

var,scale,Aniso,proj

optional arguments; same meaning for any RMmodel. If not passed, the above covariance function remains unmodified.

Details

Note that psi( . ) := phi(sqrt( . )) is completely monotone if and only if phi is a valid covariance function for all dimensions, e.g. RMstable, RMgauss, RMexponential.

Warning: RandomFields cannot check whether the combination of phi and C_i is valid.

Value

RMmqam returns an object of class RMmodel.

References

See Also

RMqam, RMmodel, RFsimulate, RFfit.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
##                   RFoptions(seed=NA) to make them all random again

RFoptions(modus_operandi="sloppy")
model <- RMmqam(phi=RMgauss(),RMgauss(),RMexp(),theta=c(0.4, 0.6), scale=0.5)
x <- seq(0, 10, 0.02)
plot(model)
z <- RFsimulate(model=model, x=x)
plot(z)

RFoptions(modus_operandi="normal")

RandomFields documentation built on Jan. 19, 2022, 1:06 a.m.