Description Usage Arguments Details Value Note References See Also Examples
RMprod
is a non-stationary covariance model given by
C(x,y) = \langle φ(x), φ(y)\rangle.
1 |
phi |
any function of class |
var,scale,Aniso,proj |
optional arguments; same meaning for any
|
In general, this model defines a positive definite kernel and hence a covariance model for all functions φ with values in an arbitrary Hilbert space. However, as already mentioned above, φ should stem from a covariance or variogram model, here.
RMprod
returns an object of class RMmodel
.
Do not mix up this model with RMmult
.
See also RMS
for a simple, alternative method to set
an arbitrary, i.e. location dependent, univariate variance.
Wendland, H. Scattered Data Approximation (2005) Cambridge: Cambridge University Press.
RMid
,
RMid
,
RMsum
,
RMmodel
,
RMmult
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 | RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
## RFoptions(seed=NA) to make them all random again
RFcov(RMprod(RMid()), as.matrix(1:10), as.matrix(1:10), grid=FALSE)
## C(x,y) = exp(-||x|| + ||y||)
RFcov(RMprod(RMexp()), as.matrix(1:10), as.matrix(1:10), grid=FALSE)
## C(x,y) = exp(-||x / 10|| + ||y / 10 ||)
model <- RMprod(RMexp(scale=10))
x <- seq(0,10,len=100)
z <- RFsimulate(model=model, x=x, y=x)
plot(z)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.