Description Usage Arguments Details Value See Also Examples
RMschlather
gives
the tail correlation function of the extremal Gaussian
process, i.e.
C(h) = 1 - √{ (1-φ(h)/φ(0)) / 2 }
where φ is the covariance of a stationary Gaussian field.
1 | RMschlather(phi, var, scale, Aniso, proj)
|
phi |
covariance function of class |
var,scale,Aniso,proj |
optional arguments; same meaning for any
|
This model yields the tail correlation function of the field
that is returned by RPschlather
.
RMschlather
returns an object of class RMmodel
.
RPschlather
,
RMmodel
,
RFsimulate
.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
## RFoptions(seed=NA) to make them all random again
## This example considers an extremal Gaussian random field
## with Gneiting's correlation function.
## first consider the covariance model and its corresponding tail
## correlation function
model <- RMgneiting()
plot(model, model.tail.corr.fct=RMschlather(model), xlim=c(0, 5))
## the extremal Gaussian field with the above underlying
## correlation function that has the above tail correlation function
x <- seq(0, 10, 0.1)
z <- RFsimulate(RPschlather(model), x)
plot(z)
## Note that in RFsimulate R-P-schlather was called, not R-M-schlather.
## The following lines give a Gaussian random field with correlation
## function equal to the above tail correlation function.
z <- RFsimulate(RMschlather(model), x)
plot(z)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.