RPmaxstable: Simulation of Max-Stable Random Fields

Description Implemented models and methods References See Also Examples

Description

Here, a list of models and methods for simulating max-stable random fields is given.

See also maxstableAdvanced for more advanced examples.

Implemented models and methods

Models

RPbrownresnick Brown-Resnick process using an automatic choice of the 3 RPbr* methods below
RPopitz extremal t process
RPschlather extremal Gaussian process
RPsmith M3 processes

Methods

RPbrmixed simulation of Brown-Resnick processes using M3 representation
RPbrorig simulation of Brown-Resnick processes using the original definition
RPbrshifted simulation of Brown-Resnick processes using a random shift

References

See Also

RP, RMmodel, RPgauss, RPbernoulli, maxstableAdvanced.

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
RFoptions(seed=0) ## *ANY* simulation will have the random seed 0; set
##                   RFoptions(seed=NA) to make them all random again

### currently not programmed



## Not run: \dontshow{
## to do : seq(0, 10, 0.02) oben ist furchtbar langsam. Warum?
}
## End(Not run)

## Not run: \dontshow{
model <- RMball()
x <- seq(0, 10, 5) # nice for   x <- seq(0, 10, 0.02)
z <- RFsimulate(RPsmith(model, xi=0), x, n=1000, every=1000)
plot(z)
hist(unlist(z@data), 150, freq=FALSE) #not correct; to do; sqrt(2) wrong
curve(exp(-x) * exp(-exp(-x)), from=-3, to=8, add=TRUE, col=3)
}
## End(Not run)

model <- RMgauss()
x <- seq(0, 10, 0.05)
z <- RFsimulate(RPschlather(model, xi=0), x, n=1000)
plot(z)
hist(unlist(z@data), 50, freq=FALSE)
curve(exp(-x) * exp(-exp(-x)), from=-3, to=8, add=TRUE)


## for some more sophisticated models see maxstableAdvanced

RandomFields documentation built on Jan. 19, 2022, 1:06 a.m.