Nothing
#' The Marshall-Olkin Kappa family
#'
#' @author Johan David Marin Benjumea, \email{johand.marin@@udea.edu.co}
#'
#' @description
#' The Marshall-Olkin Kappa family
#'
#' @param mu.link defines the mu.link, with "log" link as the default for the mu parameter.
#' @param sigma.link defines the sigma.link, with "log" link as the default for the sigma.
#' @param nu.link defines the nu.link, with "log" link as the default for the nu parameter.
#' @param tau.link defines the tau.link, with "log" link as the default for the tau parameter.
#'
#' @seealso \link{dMOK}
#'
#' @details
#' The Marshall-Olkin Kappa distribution with parameters \code{mu},
#' \code{sigma}, \code{nu} and \code{tau} has density given by
#'
#' \eqn{f(x)=\frac{\tau\frac{\mu\nu}{\sigma}\left(\frac{x}{\sigma}\right)^{\nu-1} \left(\mu+\left(\frac{x}{\sigma}\right)^{\mu\nu}\right)^{-\frac{\mu+1}{\mu}}}{\left(\tau+(1-\tau)\left(\frac{\left(\frac{x}{\sigma}\right)^{\mu\nu}}{\mu+\left(\frac{x}{\sigma}\right)^{\mu\nu}}\right)^{\frac{1}{\mu}}\right)^2}}
#'
#' for x > 0.
#'
#' @returns Returns a gamlss.family object which can be used to fit a MOK distribution in the \code{gamlss()} function.
#'
#' @example examples/examples_MOK.R
#'
#' @references
#'\insertRef{javed2018marshall}{RelDists}
#'
#'@importFrom gamlss.dist checklink
#' @importFrom gamlss rqres.plot
#' @export
MOK <- function (mu.link="log", sigma.link="log", nu.link="log", tau.link="log"){
mstats <- checklink("mu.link", "Marshall-Olkin Kappa",
substitute(mu.link), c("log", "own"))
dstats <- checklink("sigma.link", "Marshall-Olkin Kappa",
substitute(sigma.link), c("log", "own"))
vstats <- checklink("nu.link", "Marshall-Olkin Kappa",
substitute(nu.link), c("log", "own"))
tstats <- checklink("tau.link", "Marshall-Olkin Kappa",
substitute(tau.link), c("log", "own"))
structure(list(family=c("MOK", "Marshall-Olkin Kappa"),
parameters=list(mu=TRUE, sigma=TRUE, nu=TRUE, tau=TRUE),
nopar=4,
type="Continuous",
mu.link = as.character(substitute(mu.link)),
sigma.link = as.character(substitute(sigma.link)),
nu.link = as.character(substitute(nu.link)),
tau.link = as.character(substitute(tau.link)),
mu.linkfun = mstats$linkfun,
sigma.linkfun = dstats$linkfun,
nu.linkfun = vstats$linkfun,
tau.linkfun = tstats$linkfun,
mu.linkinv = mstats$linkinv,
sigma.linkinv = dstats$linkinv,
nu.linkinv = vstats$linkinv,
tau.linkinv = tstats$linkinv,
mu.dr = mstats$mu.eta,
sigma.dr = dstats$mu.eta,
nu.dr = vstats$mu.eta,
tau.dr = tstats$mu.eta,
dldm = function(y, mu, sigma, nu, tau) {
#exp1 <- (y/sigma)^(mu*nu)
#exp2 <- (exp1/(mu+exp1))^(1/mu)
#exp3 <- tau + (1-tau)*exp2
#dldm <- 1/mu + log(mu + exp1)/mu^2 - (nu*y^(mu*nu)*log(y/sigma)*(mu+1))/(mu*sigma^(mu*nu)*(mu+exp1)) - (2*(1-tau)*exp2*
# ((((y/sigma)^(-mu*nu)*(exp1+mu)*((((nu*log(y/sigma)*exp1)/(mu+exp1))-((exp1*(nu*log(y/sigma)*exp1+ 1)))/(exp1+mu)^2)))/mu) -
# (log(exp2))/mu^2))/exp3
nm <- gamlss::numeric.deriv(dMOK(y, mu, sigma, nu, tau, log=TRUE), "mu", delta=1e-04)
dldm <- as.vector(attr(nm, "gradient"))
dldm
},
dldd = function(y, mu, sigma, nu, tau) {
#exp1 <- (y/sigma)^(mu*nu)
#exp2 <- (exp1/(mu+exp1))^(1/mu)
#exp3 <- tau + (1-tau)*exp2
#dldd <- -nu/sigma + ((nu*y^mu*(mu+1))/(sigma^(mu*nu+1)*(mu+exp1))) - ((2*(1-tau)*(exp1/(mu+exp1))^(1/mu-1)*
# (((mu*nu*y*(y/sigma)^(2*mu*nu-1))/(sigma^2*(mu+exp1)^2))-((mu*nu*y*(y/sigma)^(mu*nu-1))/(sigma^2*(mu+exp1)))))/(mu*exp3))
nd <- gamlss::numeric.deriv(dMOK(y, mu, sigma, nu, tau, log=TRUE), "sigma", delta=1e-04)
dldd <- as.vector(attr(nd, "gradient"))
dldd
},
dldv = function(y, mu, sigma, nu, tau){
exp1 <- (y/sigma)^(mu*nu)
exp2 <- (exp1/(mu+exp1))^(1/mu)
exp3 <- tau + (1-tau)*exp2
dldv <- 1/nu + log(y) - log(sigma) - ((exp1*log(y/sigma)*(mu+1))/(mu+exp1)) - ((2*(1-tau)*(exp1/(mu+exp1))^(1/mu-1)*
(((mu*log(y/sigma)*exp1)/(mu+exp1))-((mu*log(y/sigma)*(y/sigma)^(2*mu*nu))/(mu+exp1)^2)))/(mu*exp3))
dldv
},
dldt = function(y, mu, sigma, nu, tau) {
exp1 <- (y/sigma)^(mu*nu)
exp2 <- (exp1/(mu+exp1))^(1/mu)
exp3 <- tau + (1-tau)*exp2
dldt <- 1/tau - ((2*(1-exp2))/exp3)
dldt
},
d2ldm2 = function(y, mu, sigma, nu, tau) {
#exp1 <- (y/sigma)^(mu*nu)
#exp2 <- (exp1/(mu+exp1))^(1/mu)
#exp3 <- tau + (1-tau)*exp2
#dldm <- 1/mu + log(mu + exp1)/mu^2 - (nu*y^(mu*nu)*log(y/sigma)*(mu+1))/(mu*sigma^(mu*nu)*(mu+exp1)) - (2*(1-tau)*exp2*
# ((((y/sigma)^(-mu*nu)*(exp1+mu)*((((nu*log(y/sigma)*exp1)/(mu+exp1))-((exp1*(nu*log(y/sigma)*exp1+ 1)))/(exp1+mu)^2)))/mu) -
# (log(exp2))/mu^2))/exp3
nm <- gamlss::numeric.deriv(dMOK(y, mu, sigma, nu, tau, log=TRUE), "mu", delta=1e-04)
dldm <- as.vector(attr(nm, "gradient"))
d2ldm2 <- -dldm * dldm
d2ldm2
},
d2ldmdd = function(y, mu, sigma, nu, tau) {
#exp1 <- (y/sigma)^(mu*nu)
#exp2 <- (exp1/(mu+exp1))^(1/mu)
#exp3 <- tau + (1-tau)*exp2
#dldm <- 1/mu + log(mu + exp1)/mu^2 - (nu*y^(mu*nu)*log(y/sigma)*(mu+1))/(mu*sigma^(mu*nu)*(mu+exp1)) - (2*(1-tau)*exp2*
# ((((y/sigma)^(-mu*nu)*(exp1+mu)*((((nu*log(y/sigma)*exp1)/(mu+exp1))-((exp1*(nu*log(y/sigma)*exp1+ 1)))/(exp1+mu)^2)))/mu) -
# (log(exp2))/mu^2))/exp3
#dldd <- -nu/sigma + ((nu*y^mu*(mu+1))/(sigma^(mu*nu+1)*(mu+exp1))) - ((2*(1-tau)*(exp1/(mu+exp1))^(1/mu-1)*
# (((mu*nu*y*(y/sigma)^(2*mu*nu-1))/(sigma^2*(mu+exp1)^2))-((mu*nu*y*(y/sigma)^(mu*nu-1))/(sigma^2*(mu+exp1)))))/(mu*exp3))
nm <- gamlss::numeric.deriv(dMOK(y, mu, sigma, nu, tau, log=TRUE), "mu", delta=1e-04)
dldm <- as.vector(attr(nm, "gradient"))
nd <- gamlss::numeric.deriv(dMOK(y, mu, sigma, nu, tau, log=TRUE), "sigma", delta=1e-04)
dldd <- as.vector(attr(nd, "gradient"))
d2ldmdd <- -dldm * dldd
d2ldmdd
},
d2ldmdv = function(y, mu, sigma, nu, tau) {
exp1 <- (y/sigma)^(mu*nu)
exp2 <- (exp1/(mu+exp1))^(1/mu)
exp3 <- tau + (1-tau)*exp2
#dldm <- 1/mu + log(mu + exp1)/mu^2 - (nu*y^(mu*nu)*log(y/sigma)*(mu+1))/(mu*sigma^(mu*nu)*(mu+exp1)) - (2*(1-tau)*exp2*
# ((((y/sigma)^(-mu*nu)*(exp1+mu)*((((nu*log(y/sigma)*exp1)/(mu+exp1))-((exp1*(nu*log(y/sigma)*exp1+ 1)))/(exp1+mu)^2)))/mu) -
# (log(exp2))/mu^2))/exp3
nm <- gamlss::numeric.deriv(dMOK(y, mu, sigma, nu, tau, log=TRUE), "mu", delta=1e-04)
dldm <- as.vector(attr(nm, "gradient"))
dldv <- 1/nu + log(y) - log(sigma) - ((exp1*log(y/sigma)*(mu+1))/(mu+exp1)) - ((2*(1-tau)*(exp1/(mu+exp1))^(1/mu-1)*
(((mu*log(y/sigma)*exp1)/(mu+exp1))-((mu*log(y/sigma)*(y/sigma)^(2*mu*nu))/(mu+exp1)^2)))/(mu*exp3))
d2ldmdv <- -dldm * dldv
d2ldmdv
},
d2ldmdt = function(y, mu, sigma, nu, tau) {
exp1 <- (y/sigma)^(mu*nu)
exp2 <- (exp1/(mu+exp1))^(1/mu)
exp3 <- tau + (1-tau)*exp2
#dldm <- 1/mu + log(mu + exp1)/mu^2 - (nu*y^(mu*nu)*log(y/sigma)*(mu+1))/(mu*sigma^(mu*nu)*(mu+exp1)) - (2*(1-tau)*exp2*
# ((((y/sigma)^(-mu*nu)*(exp1+mu)*((((nu*log(y/sigma)*exp1)/(mu+exp1))-((exp1*(nu*log(y/sigma)*exp1+ 1)))/(exp1+mu)^2)))/mu) -
# (log(exp2))/mu^2))/exp3
nm <- gamlss::numeric.deriv(dMOK(y, mu, sigma, nu, tau, log=TRUE), "mu", delta=1e-04)
dldm <- as.vector(attr(nm, "gradient"))
dldt <- 1/tau - ((2*(1-exp2))/exp3)
d2ldmdt <- -dldm * dldt
d2ldmdt
},
d2ldd2 = function(y, mu, sigma, nu, tau) {
#exp1 <- (y/sigma)^(mu*nu)
#exp2 <- (exp1/(mu+exp1))^(1/mu)
#exp3 <- tau + (1-tau)*exp2
#dldd <- -nu/sigma + ((nu*y^mu*(mu+1))/(sigma^(mu*nu+1)*(mu+exp1))) - ((2*(1-tau)*(exp1/(mu+exp1))^(1/mu-1)*
# (((mu*nu*y*(y/sigma)^(2*mu*nu-1))/(sigma^2*(mu+exp1)^2))-((mu*nu*y*(y/sigma)^(mu*nu-1))/(sigma^2*(mu+exp1)))))/(mu*exp3))
nd <- gamlss::numeric.deriv(dMOK(y, mu, sigma, nu, tau, log=TRUE), "sigma", delta=1e-04)
dldd <- as.vector(attr(nd, "gradient"))
d2ldd2 <- -dldd * dldd
d2ldd2
},
d2ldddv = function(y, mu, sigma, nu, tau) {
exp1 <- (y/sigma)^(mu*nu)
exp2 <- (exp1/(mu+exp1))^(1/mu)
exp3 <- tau + (1-tau)*exp2
#dldd <- -nu/sigma + ((nu*y^mu*(mu+1))/(sigma^(mu*nu+1)*(mu+exp1))) - ((2*(1-tau)*(exp1/(mu+exp1))^(1/mu-1)*
# (((mu*nu*y*(y/sigma)^(2*mu*nu-1))/(sigma^2*(mu+exp1)^2))-((mu*nu*y*(y/sigma)^(mu*nu-1))/(sigma^2*(mu+exp1)))))/(mu*exp3))
dldv <- 1/nu + log(y) - log(sigma) - ((exp1*log(y/sigma)*(mu+1))/(mu+exp1)) - ((2*(1-tau)*(exp1/(mu+exp1))^(1/mu-1)*
(((mu*log(y/sigma)*exp1)/(mu+exp1))-((mu*log(y/sigma)*(y/sigma)^(2*mu*nu))/(mu+exp1)^2)))/(mu*exp3))
nd <- gamlss::numeric.deriv(dMOK(y, mu, sigma, nu, tau, log=TRUE), "sigma", delta=1e-04)
dldd <- as.vector(attr(nd, "gradient"))
d2ldddv <- -dldd * dldv
d2ldddv
},
d2ldddt = function(y, mu, sigma, nu, tau) {
exp1 <- (y/sigma)^(mu*nu)
exp2 <- (exp1/(mu+exp1))^(1/mu)
exp3 <- tau + (1-tau)*exp2
#dldd <- -nu/sigma + ((nu*y^mu*(mu+1))/(sigma^(mu*nu+1)*(mu+exp1))) - ((2*(1-tau)*(exp1/(mu+exp1))^(1/mu-1)*
# (((mu*nu*y*(y/sigma)^(2*mu*nu-1))/(sigma^2*(mu+exp1)^2))-((mu*nu*y*(y/sigma)^(mu*nu-1))/(sigma^2*(mu+exp1)))))/(mu*exp3))
nd <- gamlss::numeric.deriv(dMOK(y, mu, sigma, nu, tau, log=TRUE), "sigma", delta=1e-04)
dldd <- as.vector(attr(nd, "gradient"))
dldt <- 1/tau - ((2*(1-exp2))/exp3)
d2ldddt <- -dldd * dldt
d2ldddt
},
d2ldv2 = function(y, mu, sigma, nu, tau) {
exp1 <- (y/sigma)^(mu*nu)
exp2 <- (exp1/(mu+exp1))^(1/mu)
exp3 <- tau + (1-tau)*exp2
dldv <- 1/nu + log(y) - log(sigma) - ((exp1*log(y/sigma)*(mu+1))/(mu+exp1)) - ((2*(1-tau)*(exp1/(mu+exp1))^(1/mu-1)*
(((mu*log(y/sigma)*exp1)/(mu+exp1))-((mu*log(y/sigma)*(y/sigma)^(2*mu*nu))/(mu+exp1)^2)))/(mu*exp3))
d2ldv2 <- -dldv * dldv
d2ldv2
},
d2ldvdt = function(y, mu, sigma, nu, tau) {
exp1 <- (y/sigma)^(mu*nu)
exp2 <- (exp1/(mu+exp1))^(1/mu)
exp3 <- tau + (1-tau)*exp2
dldv <- 1/nu + log(y) - log(sigma) - ((exp1*log(y/sigma)*(mu+1))/(mu+exp1)) - ((2*(1-tau)*(exp1/(mu+exp1))^(1/mu-1)*
(((mu*log(y/sigma)*exp1)/(mu+exp1))-((mu*log(y/sigma)*(y/sigma)^(2*mu*nu))/(mu+exp1)^2)))/(mu*exp3))
dldt <- 1/tau - ((2*(1-exp2))/exp3)
d2ldvdt <- -dldv * dldt
d2ldvdt
},
d2ldt2 = function(y, mu, sigma, nu, tau) {
exp1 <- (y/sigma)^(mu*nu)
exp2 <- (exp1/(mu+exp1))^(1/mu)
exp3 <- tau + (1-tau)*exp2
dldt <- 1/tau - ((2*(1-exp2))/exp3)
d2ldt2 <- -dldt * dldt
d2ldt2
},
G.dev.incr = function(y, mu, sigma, nu, tau, ...) -2*dMOK(y, mu, sigma, nu, tau, log=TRUE),
rqres = expression(rqres(pfun="pMOK", type="Continuous", y=y, mu=mu, sigma=sigma, nu=nu, tau=tau)),
mu.initial = expression(mu <- rep(1, length(y))),
sigma.initial = expression(sigma <- rep(1, length(y))),
nu.initial = expression(nu <- rep(1, length(y))),
tau.initial = expression(tau <- rep(1, length(y))),
mu.valid = function(mu) all(mu > 0),
sigma.valid = function(sigma) all(sigma > 0),
nu.valid = function(nu) all(nu > 0),
tau.valid = function(tau) all(tau > 0),
y.valid = function(y) all(y > 0)
),
class=c("gamlss.family", "family"))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.