Nothing
# Chebyshev basis function (kind 1)
# input is the coefficients of polynomial order by (1, x, x^2, x^3,...) until the highest order. The out put is this polynomial multiple by x.
move_order = function(poly){ # get the coefficient when polynomial multiple 1 times of x
return(c(0,poly))
}
# we can get the plot from the coefficients
# input is n (the number of basis function)
# output is the coefficients of polynomial order by (1, x, x^2, x^3,...) until the highest order.
# No normalized, kind only can be taken 1 and 2.
# The Chebyshev polynomials of the first kind are a special case of the Jacobi polynomials where alpha=beta=-1/2
Chebyshev_coeff = function(n, kind = 1){
p_c = list()
p_c[1] = c(1)
if(n == 1){
return(p_c[[1]])
} else if(n==2){
if(kind == 1){
p_c[[2]] = c(0,1)
return(p_c)
} else{
p_c[[2]] = c(0,2)
return(p_c)
}
} else{
if (kind == 1){
for(i in 3:n){
aux.i = i - 1
p_c[[2]] = c(0,1)
p_c[[i]] = 2*move_order(p_c[[i-1]]) - c(p_c[[i-2]], 0, 0)
}
} else{
for(i in 3:n){
aux.i = i - 1
p_c[[2]] = c(0,2)
p_c[[i]] = 2*move_order(p_c[[i-1]]) - c(p_c[[i-2]], 0, 0)
}
}
}
return(p_c)
}
# input is n (the number of basis function). coeffi is the list and contain the coefficients of polynomial order by (1, x, x^2, x^3,...) until the highest order.
poly_val = function(coeffi, x){
for(i in 1:length(coeffi)){
aux = 0
for(j in 1:length(coeffi[[i]])){
aux = aux + coeffi[[i]][j]*(2*x-1)^(j - 1)
}
coeffi[[i]] = aux
}
return(coeffi)
}
# c is number of basis function, x is the inputs value.
Chebyshev_basis = function(c, x, kind = 1){
aux_li = Chebyshev_coeff(c, kind)
res = c()
res.aux = unlist(poly_val(aux_li, x))
normcos = c()
for(i in 1:c){
fx = function(x){
aux = 0
len = length(Chebyshev_coeff(c)[[i]])
for(j in 1:len){
aux = aux + Chebyshev_coeff(c)[[i]][j]*((2*x-1)^(j-1))
}
return(aux^2)
}
normcos[i] = sqrt(1/integrate(fx, 0, 1)[[1]])
}
for(n in 1:c){
res[n] = res.aux[n]*normcos[n]
}
return(res)
}
# Chebyshev_basis(5, 1/10000)
Chebyshev_kth_b = function(k, n){
df = data.frame()
aux_x = seq(0,1, length.out = n)
for (i in aux_x){
res = Chebyshev_basis(k, i)
df = rbind(df, res)
}
df = data.frame(basis_value = df[,k])
return(df)
}
chebyshev_plot = function(n, title){
# library(ggplot2)
# coeffi = Chebyshev_coeff(n, kind = 1)
df = data.frame()
aux_x = seq(0,1, length.out = 201)
for (i in aux_x){
res = Chebyshev_basis(n, i)
df = rbind(df, res)
}
new = c()
for(i in 1:dim(df)[2]){
new = c(new, df[, i])
}
f.df = as.data.frame(new)
f.df$x = rep(aux_x, dim(df)[2])
f.df$order = as.factor(rep(0:(dim(df)[2]-1), each = 201))
theme_update(plot.title = element_text(hjust = 0.5))
p1 <- ggplot(f.df, aes(x=x, y=new, group=order, colour = order))+ geom_line() + ggtitle(title) +
xlab("") + ylab("") + scale_colour_discrete(name ="order")+theme(plot.title = element_text(size=18, face="bold"),
legend.text=element_text(size=24, face = "bold"),
axis.text.x = element_text(face="bold", color="#993333", size=22, angle=0),
axis.text.y = element_text(face="bold", color="#993333",size=22, angle=0),
axis.title.x=element_text(size=22,face='bold'),
axis.title.y=element_text(angle=90, face='bold', size=22),
legend.title = element_text(face = "bold"))
return(p1)
}
# chebyshev_plot(3)
# check normalized for polynomial
#inte = (Chebyshev_basis(5, 1/10000))^2*(1/10000)
#for(i in 2:10000){
# inte = inte + (Chebyshev_basis(5, i/10000))^2*(1/10000)
#}
#inte
beta_c = function(ts, c, b){
n = length(ts)
X = matrix(ts[(b+1):n], ncol = 1)
aux = c(Chebyshev_basis(c, (b+1)/n))
for(j in 1:b){
aux = c(aux, Chebyshev_basis(c, (b+1)/n)*ts[b+1-j])
}
Y = matrix(aux, nrow = 1) # i =2 j >= 1
for(i in (b+2):n){
aux = c(Chebyshev_basis(c, i/n))
for(j in 1:b){
aux = c(aux, Chebyshev_basis(c, i/n)*ts[i-j])
}
aux_Y = matrix(aux, nrow = 1)
Y = rbind(Y, aux_Y)
}
beta = solve(t(Y)%*%Y, tol = 1e-40)%*%t(Y)%*%X
return(list(beta, Y))
}
# for each i/n, we can get the coefficient estimated.
phi_c = function(legendre, beta, b){
c = length(legendre)
b_res = list()
for(i in 0:b){
B.aux = matrix(c(rep(0, c*i), legendre, rep(0, c*(b-i))), ncol = 1)
b_res[[i+1]] = as.numeric(t(beta)%*%B.aux)
}
return(b_res)
}
# ts is the time series data, c is the number of basis, b indicates AR(b_i)
alpha.cheby = function(ts, c, b, m=500){
l.alpha = list()
aux.alpha = c()
beta.es = beta_c(ts, c, b)
for(j in 1:(b+1)){
for(i in 1:m){
aux.alpha[i] = phi_c(Chebyshev_basis(c, i/m), beta.es[[1]], b)[[j]]
}
l.alpha[[j]] = aux.alpha
aux.alpha = c()
}
return(l.alpha)
}
alpha.loocv.che = function(ts, c, b){
n = length(ts)
aux.true = ts[(b+1):n]
aux.esti = c()
leve.i = c()
beta.es = beta_c(ts, c, b)
hat = beta.es[[2]]%*%solve(t(beta.es[[2]])%*%beta.es[[2]])%*%t(beta.es[[2]])
for(i in (b+1):n){
aux.esti[i-b] = matrix(beta.es[[2]][i-b,], nrow = 1)%*%beta.es[[1]]
leve.i[i-b] = as.numeric(hat[i-b,i-b]) # hii is the diagonal of the hat matrix
}
error = (aux.true - aux.esti)^2
lever = sum(error/((1-leve.i)^2))/(n-b)
return(c(c,b,lever))
}
# CV in the paper
alpha.cv.che = function(ts, c, b){
n = length(ts)
l = floor(3*log2(n))
aux.train = ts[1:(n-l)]
aux.vali = ts[(n-l+1):n]
tt = fix.fit.cheby(aux.train, c, b, length(aux.train))
pre = predict.cheby(aux.train, tt, length(aux.vali))
error = sum((aux.vali - pre)^2)/l
return(c(c,b,error))
}
# prediction
predict.cheby = function(ts, esti.li, k){ # k indicates the number of predictions
ts.pre = c()
phi.h = esti.li[[2]]
n = length(ts)
b = length(phi.h)
for(h in 1:k){
aux.pre = phi.h[[1]][n]
for(j in 2:b){
aux.pre = aux.pre + phi.h[[j]][n]*ts[n-h-j]
}
ts.pre[h] = aux.pre
}
return(ts.pre)
}
fix.fit.cheby = function(ts, c, b, m){
error.s = c()
n = length(ts)
es.alpha = alpha.cheby(ts, c, b, n)
aux.len = length(es.alpha)
for(i in (b+1):n){
val.aux = es.alpha[[1]][i]
for(j in 2:aux.len){
val.aux = val.aux + es.alpha[[j]][i]*ts[i-j+1]
}
error.s[i-b] = ts[i] - val.aux
}
return(list(ols.coef = beta_c(ts, c, b)[[1]], ts.coef = alpha.cheby(ts, c, b, m), Residuals = error.s))
}
auto.fit.cheby = function(ts, c = 10, b = 3, m=500, method = "CV", threshold = 0){
res.bc = matrix(ncol = 3, nrow = c*b)
ind = 1
for(i in 1:c){
for(j in 1:b){
if(method == "CV"){
res.bc[ind, ] = alpha.cv.che(ts, i, j)
} else{
res.bc[ind, ] = alpha.loocv.che(ts, i, j)
}
ind = ind + 1
}
}
colnames(res.bc) = c("c", "b", "cv")
if(method == "Elbow"){
b.s = res.bc[which(res.bc[,3] == min(res.bc[, 3])),2]
res.bc = res.bc[which(res.bc[,2] == b.s), ]
if(threshold == 0){
c.s = 1 + which(abs(res.bc[1:(length(res.bc[,3])-1),3]/res.bc[-1,3] - 1) == max(abs(res.bc[1:(length(res.bc[,3])-1),3]/res.bc[-1,3] - 1)))
} else{
c.s = max(which(abs(res.bc[1:(length(res.bc[,3])-1),3]/res.bc[-1,3] - 1) >= threshold)) + 1
}
estimate = alpha.cheby(ts, c.s, b.s, m)
}else{
b.s = res.bc[which(res.bc[,3] == min(res.bc[, 3])),2]
c.s = res.bc[which(res.bc[,3] == min(res.bc[, 3])),1]
estimate = alpha.cheby(ts, c.s, b.s, m)
}
return(list(Estimate = estimate, CV = res.bc, Coefficients = beta_c(ts, c.s, b.s)[[1]], BC = c(c.s, b.s)))
}
# Testing
mv_method.cheby = function(timese, c, b){
h.0 = 3
m.li = c(1:25)
# library(Matrix)
# Design matrix
Y = beta_l(timese, c, b)[[2]]
n = length(timese)
# li.res = list()
# m = 6
# Error, i = b* + 1... n
error.s = c()
es.alpha = alpha.cheby(timese, c, b, n)
aux.len = length(es.alpha)
for(i in (b+1):n){
val.aux = es.alpha[[1]][i]
for(j in 2:aux.len){
val.aux = val.aux + es.alpha[[j]][i]*timese[i-j+1]
}
error.s[i-b] = timese[i] - val.aux
}
Phi.li = list()
for (m in m.li){
aux_Phi=0
Phi = 0
for(i in (b+1):(n-m)){
h = 0
for(j in i:(i+m)){
aux.h = matrix(rev(c(timese[(j- b):(j - 1)],1)), ncol = 1)*error.s[j-b]
h = h + aux.h
}
B = matrix(Chebyshev_basis(c, i/n), ncol = 1)
Phi = Phi + kronecker(h, B)
aux_Phi = aux_Phi + Phi%*%t(Phi)
}
Phi.li[[m]] = 1/((n-m-b+1)*m)*aux_Phi
}
se.li = list()
for(mj in (min(m.li)+h.0):(max(m.li)-h.0)){
av.Phi = 0
se = 0
for (k in -3:3){
av.Phi = av.Phi + Phi.li[[mj + k]]
}
av.Phi = av.Phi/7
for(k in -3:3){
se = se + norm(av.Phi - Phi.li[[mj + k]], "2")^2
}
se.li[[mj-3]] = sqrt(se/6)
}
return(m.op = which(unlist(se.li) == min(unlist(se.li))) + 3)
# return(unlist(se.li))
}
fix.test.cheby = function(timese, c, b, B.s, m){
# library(Matrix)
# Design matrix
Y = beta_c(timese, c, b)[[2]]
n = length(timese)
# li.res = list()
if(m == 0){
m = mv_method.cheby(timese, c, b) #mv_method(timese, c, b) #floor(n^(1/3))
}
# m = 6
esti = alpha.cheby(timese, c, b, 10000) # the estimate of coefficients
# Error, i = b* + 1... n
error.s = c()
es.alpha = alpha.cheby(timese, c, b, n)
aux.len = length(es.alpha)
for(i in (b+1):n){
val.aux = es.alpha[[1]][i]
for(j in 2:aux.len){
val.aux = val.aux + es.alpha[[j]][i]*timese[i-j+1]
}
error.s[i-b] = timese[i] - val.aux
}
# B
inte = Chebyshev_basis(c, 1/10000)*(1/10000)
for(i in 2:10000){
inte = inte + Chebyshev_basis(c, i/10000)*(1/10000)
}
r.c = c # 2*(c-1)+1 only for tri basis.
# I.bc
I = matrix(rep(0, ((b+1)*r.c)^2), ncol = (b+1)*r.c)
for(ind in 0:(b*r.c-1)){
I[dim(I)[1] - ind, dim(I)[2] -ind] = 1
}
nT = 0
for (i in 2:length(esti)){
nT = nT + sum(((esti[[i]] - sum(esti[[i]]/10000))^2)/10000)
}
nT = n*nT
Sigma = n*solve(t(Y)%*%Y, tol = 1e-40)
inte = matrix(inte, ncol =1)
W = diag(r.c) - inte%*%t(inte)
W = matrix(bdiag(replicate(b+1,W,simplify=FALSE)), ncol = (b+1)*r.c)
Tao = Sigma%*%I%*%W%*%Sigma
# hist(unlist(Sta))
# print(ite)
Sta = list()
Phi.li = list()
for(k in 1:B.s){
R = rnorm(n-m-b, 0, 1)
Phi = 0
for(i in (b+1):(n-m)){
h = 0
for(j in i:(i+m)){
aux.h = matrix(rev(c(timese[(j- b):(j - 1)],1)), ncol = 1)*error.s[j-b]
h = h + aux.h
}
B = matrix(Chebyshev_basis(c, i/n), ncol = 1)
Phi = Phi + kronecker(h, B)*R[i-b]
}
Phi = (1/sqrt((n-m-b+1)*m))*Phi
Phi.li[[k]] = Phi
}
# image(W)
# W[(c+1):dim(W)[1], (c+1):dim(W)[2]] = 0
for(k in 1:B.s){
Sta[[k]] = t(Phi.li[[k]])%*%Tao%*%Phi.li[[k]]
}
# nT > sort(unlist(Sta))[950] if TRUE reject the null
return(1 - sum(unlist(Sta) <= nT)/B.s) # P value
}
fit.testing.b.cheby = function(timese, c, b.0 = 3, b = 8, B.s, m){
if(b.0 >= b){return(FALSE)}
# library(Matrix)
# Design matrix
Y = beta_c(timese, c, b)[[2]]
n = length(timese)
# li.res = list()
if(m == 0){
m = mv_method.cheby(timese, c, b) # does m influenced by b ??? mv_method(timese, c, b) #floor(n^(1/3))
}
esti = alpha.cheby(timese, c, b, 10000) # the estimate of coefficients
# Error, i = b* + 1... n
error.s = c()
es.alpha = alpha.cheby(timese, c, b, n)
aux.len = length(es.alpha)
for(i in (b+1):n){
val.aux = es.alpha[[1]][i]
for(j in 2:aux.len){
val.aux = val.aux + es.alpha[[j]][i]*timese[i-j+1]
}
error.s[i-b] = timese[i] - val.aux
}
r.c = c # 2*(c-1)+1 only for tri basis.
aux.pval = list()
# B
for(k.aux in 0:(b.0-1)){ # 0 ---> 1-15
# 1 ---> 2-15
nT = 0
for (i in (2+k.aux):length(esti)){
nT = nT + sum((esti[[i]]^2)/10000)
}
nT = n*nT
# I.bc
I = matrix(rep(0, ((b+1)*r.c)^2), ncol = (b+1)*r.c)
for(ind in 0:((b-k.aux)*r.c-1)){
I[dim(I)[1] - ind, dim(I)[2] -ind] = 1
}
Sigma = n*solve(t(Y)%*%Y, tol = 1e-40)
Tao = Sigma%*%I%*%Sigma
Sta = list()
Phi.li = list()
for(k in 1:B.s){
R = rnorm(n-m-b, 0, 1)
Phi = 0
for(i in (b+1):(n-m)){
h = 0
for(j in i:(i+m)){
aux.h = matrix(rev(c(timese[(j- b):(j - 1)],1)), ncol = 1)*error.s[j-b]
h = h + aux.h
}
B = matrix(Chebyshev_basis(c, i/n), ncol = 1)
Phi = Phi + kronecker(h, B)*R[i-b]
}
Phi = (1/sqrt((n-m-b+1)*m))*Phi
Phi.li[[k]] = Phi
}
for(k.aux2 in 1:B.s){
Sta[[k.aux2]] = t(Phi.li[[k.aux2]])%*%Tao%*%Phi.li[[k.aux2]]
}
aux.pval[[k.aux+1]] = 1 - sum(unlist(Sta) <= nT)/B.s
}
# nT > sort(unlist(Sta))[950] if TRUE reject the null
return(aux.pval)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.