Nothing
## ---- echo = FALSE-------------------------------------------------------
#knitr::opts_chunk$set(collapse = TRUE, comment = "#>")
knitr::opts_chunk$set(fig.width = 6, fig.height = 4.5)
## ---- warning = FALSE, message = FALSE-----------------------------------
library("SimMultiCorrData")
library("printr")
# Turn off scientific notation
options(scipen = 999)
# Set seed and sample size
seed <- 11
n <- 10000
# Continuous Distributions
Dist <- c("Gaussian", "Chisq", "Beta")
# Calculate standardized cumulants
# Those for the normal distribution are rounded to ensure the correct values
# are obtained.
M1 <- round(calc_theory(Dist = "Gaussian", params = c(0, 1)), 8)
M2 <- calc_theory(Dist = "Chisq", params = 4)
M3 <- calc_theory(Dist = "Beta", params = c(4, 2))
M <- cbind(M1, M2, M3)
# Binary and Ordinal Distributions
marginal <- list(c(0.3, 0.75), c(0.2, 0.5, 0.9))
support <- list() # default support will be generated inside simulation
# Poisson Distributions
lam <- c(1, 5, 10)
# Negative Binomial Distributions
size <- c(3, 6)
prob <- c(0.2, 0.8)
ncat <- length(marginal)
ncont <- ncol(M)
npois <- length(lam)
nnb <- length(size)
# Create correlation matrix from a uniform distribution (0.2, 0.7)
set.seed(seed)
Rey <- diag(1, nrow = (ncat + ncont + npois + nnb))
for (i in 1:nrow(Rey)) {
for (j in 1:ncol(Rey)) {
if (i > j) Rey[i, j] <- runif(1, 0.2, 0.7)
Rey[j, i] <- Rey[i, j]
}
}
# Check to see if Rey is positive-definite
min(eigen(Rey, symmetric = TRUE)$values) < 0
## ---- warning = FALSE----------------------------------------------------
Lower <- list()
# list of standardized kurtosis values to add in case only invalid power
# method pdfs are produced
Skurt <- list(seq(0.5, 2, 0.5), seq(0.02, 0.05, 0.01), seq(0.02, 0.05, 0.01))
start.time <- Sys.time()
for (i in 1:ncol(M)) {
Lower[[i]] <- calc_lower_skurt(method = "Polynomial", skews = M[3, i],
fifths = M[5, i], sixths = M[6, i],
Skurt = Skurt[[i]], seed = 104)
}
stop.time <- Sys.time()
Time <- round(difftime(stop.time, start.time, units = "min"), 3)
cat("Total computation time:", Time, "minutes \n")
# Note the message given for Distribution 1 (Normal).
## ------------------------------------------------------------------------
as.matrix(Lower[[1]]$Min[1, c("skew", "fifth", "sixth", "valid.pdf",
"skurtosis")],
nrow = 1, ncol = 5, byrow = TRUE)
## ------------------------------------------------------------------------
as.matrix(Lower[[2]]$Min[1, c("skew", "fifth", "sixth", "valid.pdf",
"skurtosis")],
nrow = 1, ncol = 5, byrow = TRUE)
Lower[[2]]$SkurtCorr1
## ------------------------------------------------------------------------
as.matrix(Lower[[3]]$Min[1, c("skew", "fifth", "sixth", "valid.pdf",
"skurtosis")],
nrow = 1, ncol = 5, byrow = TRUE)
Lower[[3]]$SkurtCorr1
## ---- warning = FALSE----------------------------------------------------
# Make sure Rey is within upper and lower correlation limits
valid <- valid_corr(k_cat = ncat, k_cont = ncont, k_pois = npois,
k_nb = nnb, method = "Polynomial", means = M[1, ],
vars = (M[2, ])^2, skews = M[3, ], skurts = M[4, ],
fifths = M[5, ], sixths = M[6, ], marginal = marginal,
lam = lam, size = size, prob = prob, rho = Rey,
seed = seed)
## ---- warning = FALSE, message = FALSE-----------------------------------
A <- rcorrvar(n = 10000, k_cont = ncont, k_cat = ncat, k_pois = npois,
k_nb = nnb, method = "Polynomial", means = M[1, ],
vars = (M[2, ])^2, skews = M[3, ], skurts = M[4, ],
fifths = M[5, ], sixths = M[6, ], marginal = marginal,
lam = lam, size = size, prob = prob, rho = Rey, seed = seed)
## ------------------------------------------------------------------------
Acorr_error = round(A$correlations - Rey, 6)
summary(as.numeric(Acorr_error))
## ---- warning = FALSE, message = FALSE-----------------------------------
B <- rcorrvar(n = 10000, k_cont = ncont, k_cat = ncat, k_pois = npois,
k_nb = nnb, method = "Polynomial", means = M[1, ],
vars = (M[2, ])^2, skews = M[3, ], skurts = M[4, ],
fifths = M[5, ], sixths = M[6, ], marginal = marginal,
lam = lam, size = size, prob = prob, rho = Rey, seed = seed,
errorloop = TRUE)
## ------------------------------------------------------------------------
Bcorr_error = round(B$correlations - Rey, 6)
summary(as.numeric(Bcorr_error))
## ------------------------------------------------------------------------
knitr::kable(B$summary_ordinal[[1]], caption = "Variable 1")
knitr::kable(B$summary_ordinal[[2]], caption = "Variable 2")
## ------------------------------------------------------------------------
as.matrix(B$summary_Poisson[, c(1, 3:6, 8:9)], nrow = 3, ncol = 7,
byrow = TRUE)
## ------------------------------------------------------------------------
as.matrix(B$summary_Neg_Bin[, c(1, 3:7, 9:10)], nrow = 2, ncol = 8,
byrow = TRUE)
## ------------------------------------------------------------------------
as.matrix(round(B$constants, 6), nrow = 3, ncol = 6, byrow = TRUE)
## ------------------------------------------------------------------------
as.matrix(round(B$summary_targetcont, 5), nrow = 3, ncol = 7, byrow = TRUE)
## ------------------------------------------------------------------------
as.matrix(round(B$summary_continuous[, c("Distribution", "mean", "sd",
"skew", "skurtosis", "fifth",
"sixth")], 5), nrow = 3, ncol = 7,
byrow = TRUE)
## ------------------------------------------------------------------------
B$valid.pdf
## ---- warning = FALSE, message = FALSE-----------------------------------
as.matrix(t(round(stats_pdf(c = B$constants[1, ], method = "Polynomial",
alpha = 0.025), 4)))
## ---- warning = FALSE, message = FALSE-----------------------------------
as.matrix(t(round(stats_pdf(c = B$constants[2, ], method = "Polynomial",
alpha = 0.025), 4)))
## ---- warning = FALSE, message = FALSE-----------------------------------
as.matrix(t(round(stats_pdf(c = B$constants[3, ], method = "Polynomial",
alpha = 0.025), 4)))
## ---- warning = FALSE, message = FALSE-----------------------------------
plot_sim_cdf(B$continuous_variables[, 2], calc_cprob = TRUE, delta = 10)
## ---- warning = FALSE, message = FALSE-----------------------------------
plot_sim_pdf_theory(B$continuous_variables[, 2], Dist = "Chisq", params = 4)
## ---- warning = FALSE, message = FALSE-----------------------------------
plot_sim_cdf(B$ordinal_variables[, 2])
## ---- warning = FALSE, message = FALSE-----------------------------------
plot_sim_theory(B$Poisson_variables[, 2], cont_var = FALSE, Dist = "Poisson",
params = 5)
## ---- warning = FALSE, message = FALSE-----------------------------------
plot_sim_pdf_theory(B$Poisson_variables[, 2], cont_var = FALSE,
Dist = "Poisson", params = 5)
## ---- warning = FALSE, message = FALSE-----------------------------------
plot_sim_theory(B$Neg_Bin_variables[, 1], cont_var = FALSE,
Dist = "Negative_Binomial", params = c(3, 0.2))
## ---- warning = FALSE, message = FALSE-----------------------------------
plot_sim_pdf_theory(B$Neg_Bin_variables[, 1], cont_var = FALSE,
Dist = "Negative_Binomial", params = c(3, 0.2))
## ---- warning = FALSE----------------------------------------------------
pois_eps <- rep(0.0001, npois)
nb_eps <- rep(0.0001, nnb)
# Make sure Rey is within upper and lower correlation limits
valid2 <- valid_corr2(k_cat = ncat, k_cont = ncont, k_pois = npois,
k_nb = nnb, method = "Polynomial", means = M[1, ],
vars = (M[2, ])^2, skews = M[3, ], skurts = M[4, ],
fifths = M[5, ], sixths = M[6, ], marginal = marginal,
lam = lam, pois_eps = pois_eps, size = size,
prob = prob, nb_eps = nb_eps, rho = Rey, seed = seed)
## ---- warning = FALSE, message = FALSE-----------------------------------
C <- rcorrvar2(n = 10000, k_cont = ncont, k_cat = ncat, k_pois = npois,
k_nb = nnb, method = "Polynomial", means = M[1, ],
vars = (M[2, ])^2, skews = M[3, ], skurts = M[4, ],
fifths = M[5, ], sixths = M[6, ], marginal = marginal,
lam = lam, pois_eps = pois_eps, size = size, prob = prob,
nb_eps = nb_eps, rho = Rey, seed = seed)
## ------------------------------------------------------------------------
Ccorr_error = round(C$correlations - Rey, 6)
summary(as.numeric(Ccorr_error))
## ---- warning = FALSE, message = FALSE-----------------------------------
D <- rcorrvar2(n = 10000, k_cont = ncont, k_cat = ncat, k_pois = npois,
k_nb = nnb, method = "Polynomial", means = M[1, ],
vars = (M[2, ])^2, skews = M[3, ], skurts = M[4, ],
fifths = M[5, ], sixths = M[6, ], marginal = marginal,
lam = lam, pois_eps = pois_eps, size = size, prob = prob,
nb_eps = nb_eps, rho = Rey, seed = seed, errorloop = TRUE)
## ------------------------------------------------------------------------
Dcorr_error = round(D$correlations - Rey, 6)
summary(as.numeric(Dcorr_error))
## ------------------------------------------------------------------------
knitr::kable(D$summary_ordinal[[1]], caption = "Variable 1")
knitr::kable(D$summary_ordinal[[2]], caption = "Variable 2")
## ------------------------------------------------------------------------
as.matrix(D$summary_Poisson[, c(1, 3:6, 8:9)], nrow = 3, ncol = 7,
byrow = TRUE)
## ------------------------------------------------------------------------
as.matrix(D$summary_Neg_Bin[, c(1, 3:7, 9:10)], nrow = 2, ncol = 8,
byrow = TRUE)
## ------------------------------------------------------------------------
as.matrix(round(D$summary_targetcont, 5), nrow = 3, ncol = 7, byrow = TRUE)
## ------------------------------------------------------------------------
as.matrix(round(D$summary_continuous[, c("Distribution", "mean", "sd",
"skew", "skurtosis", "fifth",
"sixth")], 5), nrow = 3, ncol = 7,
byrow = TRUE)
## ------------------------------------------------------------------------
D$valid.pdf
## ---- warning = FALSE, message = FALSE-----------------------------------
as.matrix(t(round(stats_pdf(c = D$constants[1, ], method = "Polynomial",
alpha = 0.025), 4)))
## ---- warning = FALSE, message = FALSE-----------------------------------
as.matrix(t(round(stats_pdf(c = B$constants[2, ], method = "Polynomial",
alpha = 0.025), 4)))
## ---- warning = FALSE, message = FALSE-----------------------------------
as.matrix(t(round(stats_pdf(c = B$constants[3, ], method = "Polynomial",
alpha = 0.025), 4)))
## ---- warning = FALSE, message = FALSE-----------------------------------
plot_sim_theory(D$Poisson_variables[, 2], cont_var = FALSE, Dist = "Poisson",
params = 5)
## ---- warning = FALSE, message = FALSE-----------------------------------
plot_sim_pdf_theory(D$Poisson_variables[, 2], cont_var = FALSE,
Dist = "Poisson", params = 5)
## ---- warning = FALSE, message = FALSE-----------------------------------
plot_sim_theory(D$Neg_Bin_variables[, 1], cont_var = FALSE,
Dist = "Negative_Binomial", params = c(3, 0.2))
## ---- warning = FALSE, message = FALSE-----------------------------------
plot_sim_pdf_theory(D$Neg_Bin_variables[, 1], cont_var = FALSE,
Dist = "Negative_Binomial", params = c(3, 0.2))
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.