Nothing
## ----setup, include=FALSE, cache=FALSE----------------------------------------
require(knitr)
opts_chunk$set(
dev="pdf",
fig.path="figures/",
fig.height=3,
fig.width=4,
out.width=".47\\textwidth",
fig.keep="high",
fig.show="hold",
fig.align="center",
prompt=TRUE, # show the prompts; but perhaps we should not do this
comment=NA # turn off commenting of ouput (but perhaps we should not do this either
)
## ----pvalues, echo=FALSE, message=FALSE---------------------------------------
print.pval = function(pval) {
threshold = 0.0001
return(ifelse(pval < threshold, paste("p<", sprintf("%.4f", threshold), sep=""),
ifelse(pval > 0.1, paste("p=",round(pval, 2), sep=""),
paste("p=", round(pval, 3), sep=""))))
}
## ----setup2,echo=FALSE,message=FALSE------------------------------------------
require(mosaic)
require(Sleuth3)
trellis.par.set(theme=col.mosaic()) # get a better color scheme for lattice
set.seed(123)
# this allows for code formatting inline. Use \Sexpr{'function(x,y)'}, for exmaple.
knit_hooks$set(inline = function(x) {
if (is.numeric(x)) return(knitr:::format_sci(x, 'latex'))
x = as.character(x)
h = knitr:::hilight_source(x, 'latex', list(prompt=FALSE, size='normalsize'))
h = gsub("([_#$%&])", "\\\\\\1", h)
h = gsub('(["\'])', '\\1{}', h)
gsub('^\\\\begin\\{alltt\\}\\s*|\\\\end\\{alltt\\}\\s*$', '', h)
})
showOriginal=FALSE
showNew=TRUE
## ----install_mosaic,eval=FALSE------------------------------------------------
# install.packages('mosaic') # note the quotation marks
## ----load_mosaic,eval=FALSE---------------------------------------------------
# require(mosaic)
## ----install_Sleuth3,eval=FALSE-----------------------------------------------
# install.packages('Sleuth3') # note the quotation marks
## ----load_Sleuth3,eval=FALSE--------------------------------------------------
# require(Sleuth3)
## ----eval=TRUE----------------------------------------------------------------
trellis.par.set(theme=col.mosaic()) # get a better color scheme for lattice
options(digits=3)
## -----------------------------------------------------------------------------
summary(case0101)
## ----eval=TRUE----------------------------------------------------------------
favstats(Score ~ Treatment, data=case0101)
histogram(~ Score | Treatment, data=case0101)
## -----------------------------------------------------------------------------
with(subset(case0101, Treatment=="Extrinsic"), stem(Score, scale=5))
with(subset(case0101, Treatment=="Intrinsic"), stem(Score, scale=5))
## ----eval=FALSE---------------------------------------------------------------
# maggregate(Score ~ Treatment, data=case0101, FUN=stem)
## ----eval=TRUE----------------------------------------------------------------
t.test(Score ~ Treatment, alternative="two.sided", data=case0101)
## ----eval=TRUE----------------------------------------------------------------
summary(lm(Score ~ Treatment, data=case0101))
## ----eval=TRUE----------------------------------------------------------------
diffmeans = diff(mean(Score ~ Treatment, data=case0101))
diffmeans # observed difference
numsim = 1000 # set to a sufficient number
nulldist = do(numsim)*diff(mean(Score~shuffle(Treatment), data=case0101))
confint(nulldist)
# Display 1.8 Sleuth
histogram(~ Intrinsic, nint=50, data=nulldist, v=c(-4.14,4.14))
## ----eval=TRUE----------------------------------------------------------------
summary(case0102) # Display 1.3 Sleuth p4
## ----eval=TRUE----------------------------------------------------------------
favstats(Salary ~ Sex, data=case0102)
bwplot(Salary ~ Sex, data=case0102)
densityplot(~ Salary, groups=Sex, auto.key=TRUE, data=case0102)
## -----------------------------------------------------------------------------
histogram(rnorm(1000)) # Normal
histogram(rexp(1000)) # Long-tailed
histogram(runif(1000)) # Short-tailed
histogram(rchisq(1000, df=15)) # Skewed
## ----eval=TRUE----------------------------------------------------------------
t.test(Salary ~ Sex, var.equal=TRUE, data=case0102)
## ----obsdiff,eval=TRUE--------------------------------------------------------
obsdiff = diff(mean(Salary ~ Sex, data=case0102)); obsdiff
## ----permutetest--------------------------------------------------------------
numsim = 1000
res = do(numsim) * diff(mean(Salary~shuffle(Sex), data=case0102))
densityplot(~ Male, data=res)
confint(res)
## ----eval=FALSE---------------------------------------------------------------
# larger = sum(with(res, abs(Male) >= abs(obsdiff)))
# larger
# pval = larger/numsim
# pval
## ----eval=TRUE----------------------------------------------------------------
t.test(Salary ~ Sex, alternative="less", data=case0102)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.