inst/doc/TTR_time_tutorial.R

## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(echo = TRUE)

## ----eval=FALSE---------------------------------------------------------------
#   install.packages("TTR.PGM_1.0.0.tar.gz",repos=NULL, type="source")

## -----------------------------------------------------------------------------
 setwd(tempdir())

## ----results='hide', message=FALSE--------------------------------------------
library(LaplacesDemon)
library(DEoptim)
library(TTR.PGM)

## -----------------------------------------------------------------------------
    model_ssm <- function(parm, Data)
    {
        ### parameters
        ttr_parm <- TTR.PGM::get_parms(parm, Data)
        parm <- TTR.PGM::interval_parms(parm,Data)
        names(parm)<-Data$parm.names

        ### Process model
        x <- TTR.PGM::run_ttr(ttr_parm,Data)
        
        ### Log-likelihood
        steps <- Data$options$steps
        Uc <-  x["Uc",,steps,,drop=T] 
        mu_sif <- Uc*parm["b1_sif"] + parm["b0_sif"]
        oe_sif <- parm["oe_sif_0"] + parm["oe_sif_1"]*Data$ymat[,"q"] 
        LL_sif <- sum( dnorm(Data$y[,"sif"], mu_sif, oe_sif, log = TRUE),na.rm=T)
        LL <- LL_sif 
        yhat <- c(rnorm(Data$n.time,mu_sif,oe_sif) )
        
        ### Log-Prior
        lo <- Data$bounds[,"lower"]
        up <- Data$bounds[,"upper"]
        bound.mu <- (lo+up)/2
        bound.sd <- abs(lo-up)/50
        prior_iM <- dunif( parm["iM"],lo["iM"],up["iM"],log=TRUE)
        prior_oe <- dnorm(parm["oe_sif_0"],0,1,log=TRUE)+
                    dnorm(parm["oe_sif_1"],0,1,log=TRUE)
        prior_pe <- sum(dgamma(parm[Data$pos.pe],3,10,log=TRUE))
        prior_scale <- dnorm(parm["b0_sif"],0,10,log=TRUE)  +
                          dnorm(parm["b1_sif"],0,100,log=TRUE) 
        prior_ttr_env <- sum(dnorm( parm[Data$pos.env],
                                mean = bound.mu[Data$pos.env],
                                sd = bound.sd[Data$pos.env],log=TRUE) ) 
        priors <- prior_iM + 
                    prior_oe + 
                    prior_pe + 
                    prior_scale +
                    prior_ttr_env  
                    
        ### Log-Posterior
        LP <- LL + priors 

        ### Return
        if (Data$options$optim == "DEoptim")
        return(-1 * LP) 
        if (Data$options$optim == "LaplacesDemon") 
            return(list(LP = LP, Dev = -2 * LL, Monitor = LP, yhat = yhat, parm = as.numeric(parm)))
        if (Data$options$optim == "no")
            return(list(sif = yhat))
}


## -----------------------------------------------------------------------------
    site.name <- "SA_BFA_BNP"
    data(data_input_time_SA_BFA_BNP)
    ttr.time.in <- data_input_time_SA_BFA_BNP

## -----------------------------------------------------------------------------
  seconds.week = 60*60*24*7 
  seconds.day = 60*60*24
  input <- with(ttr.time.in, TTR.PGM::get_input(observations = data.frame(sif=sif*100),
                                     lon = 1,
                                     lat = 1,
                                     tnur = tsoil,
                                     tcur = tair-273.15,
                                     tgrowth = tair-273.15,
                                     tloss = tair-273.15,
                                     seconds = seconds.week,
                                     p3=p3, p4=p4,
                                     catm = CA,
                                     rsds = srad/seconds.day,
                                     swc = msoil*100))

## -----------------------------------------------------------------------------
    time_options <- standard_options
    time_options$initial_mass_par <- TRUE
    time_options$pe <- TRUE
    time_options$ve <- "oak"
    time_options$steps <- 1:dim(input$timeseries)[2]
    time_options$optim <- "DEoptim"

## -----------------------------------------------------------------------------
    max.swc <- max(input$timeseries["swc",,1])
    bounds = list(alpha = list(
                    oe_sif_0 = c(0,100),
                    oe_sif_1 = c(0,100),
                    b1_sif = c(0,5000), 
                    b0_sif = c(-1000,1000)
                    ),   
                  beta = list(
                    CU_Ns_1 = c(NA,NA),
                    CU_Ns_2 = c(NA,NA),
                    CU_swc_1 = c(0,max.swc),
                    CU_swc_2 = c(0,100),
                    g_swc_1 = c(0,max.swc),
                    g_swc_2 = c(0,100),
                    g_tgrowth_1 = c(0,50),
                    g_tgrowth_2 = c(0,50),
                    g_tgrowth_3 = c(0,50),
                    g_tgrowth_4 = c(0,50),
                    L_mix_1 = c(50,100),
                    L_mix_2 = c(0,100),                    
                    L_mix_3 = c(0,100),                    
                    L_tloss_1 = c(-20,50),
                    L_tloss_2 = c(0,50),
                    L_swc_1 = c(0,max.swc),
                    L_swc_2 = c(0,100),
                    NU_Nsoil_1 = c(NA,NA),
                    NU_Nsoil_2 = c(NA,NA),
                    NU_swc_1 = c(0,max.swc),
                    NU_swc_2 = c(0,100),
                    NU_swc_3 = c(0,100),
                    NU_swc_4 = c(0,100),
                    NU_tnur_1 = c(0,50),
                    NU_tnur_2 = c(0,50),
                    pe_Ms=c(0,1),
                    pe_Mr=c(0,1),
                    pe_Cs=c(0,1),
                    pe_Cr=c(0,1),
                    pe_Ns=c(0,1),
                    pe_Nr=c(0,1),
                    iM=c(1,100)
                    ) 
                    )

## -----------------------------------------------------------------------------
    time_globals <- standard_globals
    time_globals["gmax"] = 50    
    time_globals["mmax"] = 0.010   
    time_globals["KM"] = 0.5 
    time_globals["KA"] = 50 

## -----------------------------------------------------------------------------
    MyData <- TTR.PGM::make_data(input,options=time_options,bounds=bounds, globals=time_globals)

## -----------------------------------------------------------------------------
  MyData$ymat <- data.frame( y = MyData$y,q =ttr.time.in$q) 

## -----------------------------------------------------------------------------
    MyData$pos.pe <- grep("^pe",MyData$parm.names)
    MyData$pos.env <- c(grep("^CU_",MyData$parm.names),
                        grep("^NU_",MyData$parm.names),
                        grep("^g_",MyData$parm.names),
                        grep("^L_",MyData$parm.names))

## ----results='hide', message=FALSE--------------------------------------------
    set.seed(2024)
    MyData$options$optim <- "DEoptim"
    deoptim_iter = 1000
    deoptim_trace = deoptim_iter
    deoptim_trace = 50 
    deoptim_pop = 50
    ft.DE<-DEoptim(model_ssm, upper=MyData$bounds[,"upper"],
                            lower=MyData$bounds[,"lower"],
                            control=DEoptim.control(
                            NP = deoptim_pop,
                            itermax = deoptim_iter,
                            trace = deoptim_trace,
                            CR=0.9, F=0.8, c=0.0,
                            initialpop = NULL,
                            strategy = 2,
                            parallelType=0,
                            parVar=c("MyData"),
                            packages = list("LaplacesDemon","TTR.PGM")),
                            Data=MyData)

## -----------------------------------------------------------------------------
    saveRDS(ft.DE,paste0("ft.DE_",site.name,".rds"))                        
    saveRDS(MyData,paste0("MyData_",site.name,".rds"))     

## ----results='hide', message=FALSE--------------------------------------------
    ft.DE <- readRDS(paste0("ft.DE_",site.name,".rds"))
    MyData <- readRDS(paste0("MyData_",site.name,".rds"))                        
    iter<-2e4 
    status<-iter/100 
    thin<-10
    MyData$options$optim <- "LaplacesDemon"

    Initial.Values <- as.numeric(ft.DE$optim$bestmem)
    ft.LD.DRAM <- LaplacesDemon(model_ssm, Data=MyData, Initial.Values,
        Covar=NULL, Iterations=iter, Status=status, Thinning=thin,
        Algorithm="DRAM", Specs=list(Adaptive=iter/10, Periodicity=10))

    Initial.Values <- as.initial.values(ft.LD.DRAM)
    ft.LD.DRAM <- LaplacesDemon(model_ssm, Data=MyData, Initial.Values,
        Covar=ft.LD.DRAM$covar, Iterations=iter, Status=status, Thinning=thin,
        Algorithm="DRAM", Specs=list(Adaptive=iter/10, Periodicity=10))
    


## ----echo=FALSE---------------------------------------------------------------
    plot(ft.LD.DRAM, BurnIn=1000, MyData, PDF=TRUE, Parms=NULL,
            FileName=paste0("MCMC_DRAM_",site.name,".pdf"))  
   saveRDS(ft.LD.DRAM,paste0("ft.LD.DRAM_",site.name,".rds"))   
   ft.LD.DRAM<-readRDS(paste0("ft.LD.DRAM_",site.name,".rds"))

## -----------------------------------------------------------------------------
    myMAPmean <- function(ft,MyData,q=0.9) {   
        LP<-ft$Monitor[,"LP"]
        n <- length(LP)
        LP <- LP[(n/2):n] # discard first half of chain
        wLP <- which(LP > quantile(LP,q) )
        MAPmeans <- apply(ft$Posterior1[wLP,MyData$parm.names],2,mean)
        return(MAPmeans)
        }
    myMAPquantile <- function(ft,MyData,q=c(0.25,0.75)) { 
        LP<-ft$Monitor[,"LP"]
        n <- length(LP)
        LP <- LP[(n/2):n] # discard first half of chain
        wLP <- which(LP > quantile(LP,q[1]) & LP < quantile(LP,q[2]))
        inQ <- ft$Posterior1[wLP,MyData$parm.names]
        return(inQ)
        }     

## -----------------------------------------------------------------------------
    calc_rmse <- function(observed, modelled) {
        rmse <- sqrt(mean((observed - modelled)^2))
        return(rmse)
    }
    calc_r_squared <- function(observed, modelled) {
        ss_total <- sum((observed - mean(observed))^2)
        ss_residual <- sum((observed - modelled)^2)
        rsq <- 1 - (ss_residual / ss_total)
        return(rsq)
    }

## -----------------------------------------------------------------------------
    parm.m <-myMAPquantile(ft.LD.DRAM,MyData,q=c(0.01,0.99))
    sif.mat <- t(apply(parm.m, 1, function(x) {predict_ttr(x, model_ssm, MyData)$sif}))
    pred.lo <- apply(sif.mat,2,quantile,probs=0.025)    
    pred.up <- apply(sif.mat,2,quantile,probs=0.975)    
    pred.mean <- apply(sif.mat,2,mean)    

## ----fig.width=12-------------------------------------------------------------
  oldpar <- par(mar=c(4,4,2,4))
  mycol<-c("#92e2ff","#ff1f11","#377eb8")
  x<-ttr.time.in$date
  yup <- 100
  plot(x,MyData$y[,"sif"],type="p",ylim=c(0,yup),ylab="",xlab="",main=site.name,
         axes=F, pch=19, cex=0.5)
  axis(2,at=seq(0,yup,length=5),labels=seq(0,yup,length=5))
  polygon(c(x,rev(x)),c(pred.lo,rev(pred.up)),
          col=  adjustcolor( mycol[1], alpha.f = 0.6), border=mycol[1])
  points(x,MyData$y[,"sif"],pch=19,cex=0.5)
  lines(x,pred.mean,col=mycol[2],lwd=2.0,lty=1)
  axis.Date(1,at = seq(as.Date("2000/01/1"),as.Date("2021/12/1"), "years"), line=0)
  mtext("SIF", side=2, line=3, adj=0.5, cex=1.0, col="black", outer=FALSE)      
  par(oldpar)

## -----------------------------------------------------------------------------
 plot(MyData$y[,"sif"],pred.mean,pch=19,col=mycol[1],
      ylab="Predicted SIF",xlab="Observed SIF")
 abline(a=0,b=1,lwd=2)
 abline(lm(pred.mean~MyData$y[,"sif"]),lty=2,lwd=2)
 legend("topleft",bty="n",lty=c(1,2),legend=c("1:1 line","regression line"))

## -----------------------------------------------------------------------------
  calc_r_squared(MyData$y[,"sif"],pred.mean)    
  calc_rmse(MyData$y[,"sif"],pred.mean)

## ----echo=FALSE---------------------------------------------------------------
  pdf(file=paste0("fig_",site.name,".pdf"),width=10,height=4)
  oldpar <- par(mar = c(4, 4, 2, 4)) 
  mycol<-c("#92e2ff","#ff1f11","#377eb8")
  x<-ttr.time.in$date
  yup <- 100
  plot(x,MyData$y[,"sif"],type="p",ylim=c(0,yup),ylab="",xlab="",main="",
         axes=F, pch=19, cex=0.5)
  axis(2,at=seq(0,yup,length=5),labels=seq(0,yup,length=5))
  polygon(c(x,rev(x)),c(pred.lo,rev(pred.up)),
          col=  adjustcolor( mycol[1], alpha.f = 0.6), border=mycol[1])
  points(x,MyData$y[,"sif"],pch=19,cex=0.5)
  lines(x,pred.mean,col=mycol[2],lwd=2.0,lty=1)
  axis.Date(1,at = seq(as.Date("2000/01/1"),as.Date("2021/12/1"), "years"), line=0)
  mtext("SIF", side=2, line=3, adj=0.5, cex=1.0, col="black", outer=FALSE)    
  dev.off()
  par(oldpar)

## ----echo=FALSE---------------------------------------------------------------
 pdf(file=paste0("fig_xy_",site.name,".pdf"),width=4,height=4)
 plot(MyData$y[,"sif"],pred.mean,pch=19,cex=0.5,col=mycol[1],
      ylab="Predicted SIF",xlab="Observed SIF",axes=F)
 axis(1)
 axis(2)
 abline(a=0,b=1,lwd=2)
 abline(lm(pred.mean~MyData$y[,"sif"]),lty=2,lwd=2)
 legend("topleft",bty="n",lty=c(1,2),legend=c("1:1 line","regression line"))
 dev.off()

Try the TTR.PGM package in your browser

Any scripts or data that you put into this service are public.

TTR.PGM documentation built on June 8, 2025, 9:32 p.m.