knitr::opts_chunk$set( collapse = TRUE, comment = "#>" )
library(dplyr) library(tidyr) library(magrittr) library(Tplyr) library(knitr)
t <- tplyr_table(tplyr_adas, TRTP, where=EFFFL == "Y" & ITTFL == "Y" & PARAMCD == "ACTOT" & ANL01FL == "Y") %>% set_pop_data(tplyr_adsl) %>% set_pop_treat_var(TRT01P) %>% set_pop_where(EFFFL == "Y" & ITTFL == "Y") %>% set_distinct_by(USUBJID) %>% set_desc_layer_formats( 'n' = f_str('xx', n), 'Mean (SD)' = f_str('xx.x (xx.xx)', mean, sd), 'Median (Range)' = f_str('xx.x (xxx;xx)', median, min, max) ) %>% add_layer( group_desc(AVAL, where= AVISITN == 0, by = "Baseline") ) %>% add_layer( group_desc(AVAL, where= AVISITN == 24, by = "Week 24") ) %>% add_layer( group_desc(CHG, where= AVISITN == 24, by = "Change from Baseline") ) sum_data <- t %>% build(metadata=TRUE) %>% apply_row_masks(row_breaks = TRUE) %>% select(row_id, starts_with('row_label'), var1_Placebo, `var1_Xanomeline Low Dose`, `var1_Xanomeline High Dose`) # I don't need the full model code for this example so just mock it up. # But if you want to see it, it's available here: # https://github.com/RConsortium/submissions-pilot1/blob/694a207aca7e419513ffe16f6f5873526da1bdcb/R/eff_models.R#L17 model_portion <- tibble::tribble( ~"row_id", ~"row_label1", ~"var1_Xanomeline Low Dose", ~"var1_Xanomeline High Dose", "x4_1", "p-value(Dose Response) [1][2]", "", "0.245", "x4_2", "", "", "", "x4_3", "p-value(Xan - Placebo) [1][3]", "0.569", "0.233", "x4_4", " Diff of LS Means (SE)", "-0.5 (0.82)", "-1.0 (0.84)", "x4_5", " 95% CI", "(-2.1;1.1)", "(-2.7;0.7)", "x4_6", "", "", "", "x4_7", "p-value(Xan High - Xan Low) [1][3]", "", "0.520", "x4_8", " Diff of LS Means (SE)", "", "-0.5 (0.84)", "x4_9", " 95% CI", "", "(-2.2;1.1)" ) full_data <- bind_rows(sum_data, model_portion) %>% mutate( across(where(is.character), ~ replace_na(., "")) )
As covered in vignette('metadata')
,Tplyr can produce metadata for any result that it calculates. But what about data that Tplyr can't produce, such as a efficacy results or some sort of custom analysis? You may still want that drill down capability either on your own or paired with an existing Tplyr table.
Take for instance Table 14-3.01 from the CDISC Pilot. Skipping the actual construction of the table, here's the output data from Tplyr and some manual calculation:
kable(full_data)
This is the primary efficacy table from the trial. The top portion of this table is fairly straightforward with Tplyr and can be done using descriptive statistic layers. Once you hit the p-values on the lower house, this becomes beyond Tplyr's remit. To produce the table, you can combine Tplyr output with a separate data frame analyzed and formatted yourself (but note you can still use some help from Tplyr tools like apply_formats()
).
But what about the metadata? How do you get the drill down capabilities for that lower half of the table? We've provided a couple additional tools in Tplyr to allow you to construct your own metadata and append existing metadata present in a Tplyr table.
tplyr_meta
objectAs covered in vignette('metadata')
, a tplyr_meta
object consists of two different fields: A list of variable names, and a list of filter conditions. You provide both of these fields as a list of quosures:
m <- tplyr_meta( names = quos(a, b, c), filters = quos(a==1, b==2, c==3) ) m
The tplyr_meta()
function can take these fields immediately upon creation. If you need to dynamically create a tplyr_meta
object such as how Tplyr constructs the objects internally), the functions add_variables()
and add_filters()
are available to extend an existing tplyr_meta
object:
m <- m %>% add_variables(quos(x)) %>% add_filters(quos(x == 'a')) m
Now that we can create our own tplyr_meta
objects, let's assemble the metadata for the bottom portion of Table 14-3.01:
# Overall model subset of data meta <- tplyr_meta( names = quos(TRTP, EFFFL, ITTFL, ANL01FL, SITEGR1, AVISIT, AVISITN, PARAMCD, AVAL, BASE, CHG), filters = quos(EFFFL == "Y", ITTFL == "Y", PARAMCD == "ACTOT", ANL01FL == "Y", AVISITN == 24) ) # Xan High / Placebo contrast meta_xhp <- meta %>% add_filters(quos(TRTP %in% c("Xanomeline High Dose", "Placebo"))) # Xan Low / Placbo Contrast meta_xlp <- meta %>% add_filters(quos(TRTP %in% c("Xanomeline Low Dose", "Placebo"))) # Xan High / Xan Low Contrast meta_xlh <- meta %>% add_filters(quos(TRTP %in% c("Xanomeline High Dose", "Xanomeline Low Dose"))) eff_meta <- tibble::tribble( ~"row_id", ~"row_label1", ~"var1_Xanomeline Low Dose", ~"var1_Xanomeline High Dose", "x4_1", "p-value(Dose Response) [1][2]", NULL, meta, "x4_3", "p-value(Xan - Placebo) [1][3]", meta_xlp, meta_xhp, "x4_4", " Diff of LS Means (SE)", meta_xlp, meta_xhp, "x4_5", " 95% CI", meta_xlp, meta_xhp, "x4_7", "p-value(Xan High - Xan Low) [1][3]", NULL, meta_xlh, "x4_8", " Diff of LS Means (SE)", NULL, meta_xlh, "x4_9", " 95% CI", NULL, meta_xlh )
Let's break down what happened here:
tplyr_meta
object.tplyr_meta
objects for the other result cells. The model data contains contrasts of each of the different treatment group comparisons. By using add_filters()
, we can create those additional three tplyr_meta
objects using the starting point and attaching an additional filter condition.tplyr_table
object that created the summary portion of this table, we need a data frame. There's a lot of ways to do this, but I like the display and explicitness of tibble::tribble()
.When building a data frame for use with tplyr_table
metadata, there are really only two rules:
row_id
row_id
values cannot be duplicates of any other value within the existing metadata.The row_id
values built by Tplyr will always follow the format "row_id
of "c2_3". In this example, I chose "x4_n" as the format for the "x" to symbolize custom, and these data can be thought of as the fourth layer. That said, these values would typically be masked by the viewer of the table so they really just need to be unique - so you can choose whatever you want.
If the custom metadata you're constructing requires references to data outside your target dataset, this is also possible with a tplyr_meta
object. If you're looking for non-overlap with the target dataset, you can use an anti-join. Anti-joins can be added to a tplyr_meta
object using the add_anti_join()
function.
meta %>% add_anti_join( join_meta = tplyr_meta( names = quos(TRT01P, EFFFL, ITTFL, SITEGR1), filters = quos(EFFFL == "Y", ITTFL == "Y") ), on = quos(USUBJID) )
Now that we've created our custom extension of the Tplyr metadata, let's extend the existing data frame. To do this, Tplyr has the function append_metadata()
:
t <- append_metadata(t, eff_meta)
Behind the scenes, this function simply binds the new metadata with the old in the proper section of the tplyr_table
object. You can view the the tplyr_table
metadata with the function get_metadata()
:
get_metadata(t)
Finally, as with the automatically created metadata from Tplyr, we can query these result cells just the same:
get_meta_subset(t, 'x4_1', "var1_Xanomeline High Dose") %>% head() %>% kable()
You very well may have a scenario where you want to use these metadata functions outside of Tplyr in general. As such, there are S3 methods available to query metadata from a dataframe instead of a Tplyr table, and parameters to provide your own target data frame:
get_meta_subset(eff_meta, 'x4_1', "var1_Xanomeline High Dose", target=tplyr_adas) %>% head() %>% kable()
As with the Tplyr metadata, the only strict criteria here is that your custom metadata have a row_id
column.
The vignette wouldn't be complete without the final contextual example - so here we go. Ultimately these pieces an all fit together in the context of a Shiny application and give you the desired click-through experience.
knitr::include_app("https://michael-stackhouse.shinyapps.io/Tplyr-efficacy-shiny-demo", height = "900px")
Source code available here
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.