Nothing
###########################
## Compute the implicative statistic of a rule
###########################
implicativestat <- function(x, y, type="intensity", resid="standard", weights=NULL, continuity=FALSE) {
if (!(type %in% c("intensity", "indice"))) {
stop("type should be intensity or indice")
}
if (!(resid %in% c("standard", "deviance", "Freeman-Tukey", "adjusted"))) {
stop("resid should be one of standard, deviance, Freeman-Tukey or ajusted")
}
if(is.null(weights)){
weights <- rep(1, length(x))
}
x <- factor(x)
y <- factor(y)
xgrp <- levels(x)
ygrp <- levels(y)
result <- matrix(0, nrow=length(xgrp), ncol=length(ygrp))
n <- sum(weights)
rownames(result) <- xgrp
colnames(result) <- ygrp
for (i in 1:length(xgrp)) {
condi <- x==xgrp[i]
for (j in 1:length(ygrp)) {
condj <- y==ygrp[j]
Nnbj <- sum(weights[(condi)&!condj])
if(continuity) {
Nnbj <- Nnbj + 0.5
}
Nexpnbj <- sum(weights[condi])*sum(weights[!condj])/n
if (resid=="standard") {
indice <- (Nnbj-Nexpnbj)/sqrt(Nexpnbj)
}
else if (resid=="deviance") {
indice <- sign(Nnbj-Nexpnbj)*sqrt(abs(2*Nnbj*log(Nnbj/Nexpnbj)))
}
else if (resid=="Freeman-Tukey") {
indice <- sqrt(Nnbj)+sqrt(1+Nnbj)-sqrt(4*Nexpnbj+1)
}
else if (resid=="adjusted") {
indice <- (Nnbj-Nexpnbj)/sqrt(Nexpnbj*(sum(weights[condj])/n)*(1-sum(weights[condi])/n))
}
if (type=="indice") {
result[i, j] <- indice
}
else {
result[i, j] <- pnorm(-indice)
}
}
}
return(result)
}
seqimplic <- function(seqdata, group, with.missing=FALSE, weighted=TRUE, na.rm=TRUE) {
type <- "indice"
resid <- "adjusted"
continuity <- TRUE
if (!inherits(seqdata, "stslist")){
stop(" [!] seqdata is not a sequence object, use seqdef function to create one")
}
ret <- list(type=type, resid=resid, with.missing=with.missing, continuity=continuity)
seqg <- FALSE
if(na.rm){
cond <- !is.na(group)
group <- factor(group[cond])
seqdata <- seqdata[cond, ]
} else {
group <- factor(group)
}
ret$levels <- levels(group)
alph <- alphabet(seqdata)
cpal <- cpal(seqdata)
ret$labels <- attr(seqdata, "labels")
discardMissing <- FALSE
if(with.missing){
alph <- c(alph, attr(seqdata, "nr"))
cpal <- c(cpal, attr(seqdata, "missing.color"))
ret$labels <- c(ret$labels, "Missing")
}
else if(any(seqdata==attr(seqdata, "nr"))){
discardMissing <- TRUE
warning("Discarding missing values")
}
ret$alphabet <- alph
ret$cpal <- cpal
weights <- attr(seqdata, "weights")
if(is.null(weights) || !weighted){
weights <- rep(1, nrow(seqdata))
}
ret$indices <- array(NA, dim=c(length(ret$levels), length(alph), ncol(seqdata)), dimnames=list(ret$levels, alph, colnames(seqdata)))
for(i in 1:ncol(seqdata)){
seqi <- seqdata[, i]
if(discardMissing) {
cond <- !seqi %in% c(attr(seqdata, "nr"), attr(seqdata, "void"))
} else {
cond <- seqi != attr(seqdata, "void")
}
# if(seqg){
# group <- groupseq[, i]
# if(!na.rm) {
# group <- recodef(group, list(Missing=c(c(attr(groupseq, "nr"), attr(groupseq, "void")))))
# }else{
# cond <- cond &(!group %in% c(attr(groupseq, "nr"), attr(groupseq, "void")))
# }
# }
i_indice <- implicativestat(x=group[cond], y=seqi[cond], type=type, resid=resid, weights=weights[cond], continuity=continuity)
ret$indices[ rownames(i_indice) , colnames(i_indice), i] <- i_indice
}
class(ret) <- "seqimplic"
ret$xtstep <- attr(seqdata, "xtstep")
ret$tick.last <- attr(seqdata, "tick.last")
return(ret)
}
print.seqimplic <- function(x, xtstep=NULL, tick.last=NULL, round=NULL, conf.level=NULL, na.print="", ...){
if (is.null(xtstep)) {
xtstep <- ifelse(!is.null(x$xtstep), x$xtstep, 1)
}
if(is.null(tick.last)){
tick.last <- ifelse(!is.null(x$tick.last), x$tick.last, FALSE)
}
indices <- x$indices
if(!is.null(round)){
indices <- round(indices, round)
}
if(!is.null(conf.level)){
if(x$type == "indice"){
conf.level <- -qnorm(conf.level)
cond <- indices > conf.level
} else {
cond <- indices < conf.level
}
indices[cond] <- ""
indices[!cond] <- "*"
}
for(ll in x$levels){
cat(ll, "\n")
npos <- length(dimnames(indices)[[3]])
tpos <- seq(1, npos, xtstep)
if (tick.last & tpos[length(tpos)] < npos) tpos <- c(tpos,npos)
print(indices[ll, , tpos], na.print=na.print, ...)
}
}
plot.seqimplic <- function(x, main=NULL, ylim=NULL, xaxis=TRUE,
ylab="Implication", yaxis=TRUE, axes="all", xtlab=NULL,
xtstep = NULL, tick.last = NULL, cex.axis=1,
with.legend="auto", ltext=NULL, cex.legend=1,
legend.prop=NA, rows=NA, cols=NA, conf.level=0.95, lwd=1, only.levels=NULL, ...){
savepar <- par(no.readonly = TRUE)
on.exit(par(savepar))
if(is.null(only.levels)){
only.levels <- x$levels
}
if (is.null(xtstep)) {
xtstep <- ifelse(!is.null(x$xtstep), x$xtstep, 1)
}
if(is.null(tick.last)){
tick.last <- ifelse(!is.null(x$tick.last), x$tick.last, FALSE)
}
plotindex <- (1:length(x$levels))[x$levels %in% only.levels]
nplot <- length(plotindex)
if(nplot>1||with.legend!=FALSE){
lout <- TraMineR:::TraMineR.setlayout(nplot, rows, cols, with.legend, axes, legend.prop)
layout(lout$laymat, heights=lout$heights, widths=lout$widths)
legpos <- lout$legpos
}
x$indices <- -x$indices
if(is.null(ylim)) {
if(x$type=="intensity"){
ylim <- c(0, 1)
} else {
ylim <- c(0, max(x$indices, na.rm=TRUE))
if(any(is.na(ylim)|!is.finite(ylim))){
ylim <- c(0, 1)
}
}
}
if(is.null(main)){
main <- x$levels
}else if(length(main) == 1) {
main <- paste(main, x$levels, sep=" - ")
}
for (np in plotindex) {
toplot <- x$indices[np, , ]
toplot[toplot<0] <- NA
plot(toplot[1, ], ylim=ylim, xlim=c(1, dim(x$indices)[3]), col=x$cpal[1], main=main[np],
type="l", ylab=ylab, axes=FALSE, xlab=NA, lwd=lwd, ...)
for(a in 2:length(x$alphabet)) {
lines(toplot[a, ], col=x$cpal[a], type="l", lwd=lwd, ...)
}
## Plotting the x axis
if (xaxis) {
if (is.null(xtlab)){
xtlab <- dimnames(x$indices)[[3]]
}
npos <- length(xtlab)
tpos <- seq(from=1, to=npos, by=xtstep)
if (tick.last & tpos[length(tpos)] < npos) tpos <- c(tpos,npos)
axis(1, at=tpos-0.5, labels=xtlab[tpos], cex.axis=cex.axis, ...)
}
if (is.null(yaxis) || yaxis) {
axis(2, cex.axis=cex.axis, ...)
}
if(!is.null(conf.level)) {
for(conf in conf.level){
label <- paste("Conf. ", format(conf))
if(x$type=="intensity"){
h <- conf
} else {
h <- qnorm(conf)
}
abline(h=h, lty=3, col="grey", lwd=lwd)
cex.textlab <- 0.8*cex.axis
text(x=dim(x$indices)[3] - strwidth(label, cex=cex.textlab)/2, y=h + strheight(label, cex=cex.textlab), labels=label, cex=cex.textlab)
}
}
}
if (with.legend!=FALSE) {
## Extracting some sequence characteristics
TraMineR:::TraMineR.legend(legpos, x$labels, x$cpal, cex=cex.legend)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.