Nothing
#' @title Farrington-Manning test for rate difference
#'
#' @description
#' Test rate difference by comparing it to a pre-specified value using the
#' Farrington-Manning test
#'
#' @param endpoint Character. Name of the endpoint in \code{data}.
#' @param placebo Character. String indicating the placebo in \code{data$arm}.
#' @param data Data frame. Usually it is a locked data set.
#' @param alternative a character string specifying the alternative hypothesis,
#' must be one of \code{"greater"} or \code{"less"}. No default value.
#' \code{"greater"} means superiority of treatment over placebo is established
#' by rate difference greater than `delta`.
#' @param ... Subset conditions compatible with \code{dplyr::filter}.
#' \code{glm} will be fitted on this subset only. This argument can be useful
#' to create a subset of data for analysis when a trial consists of more
#' than two arms. By default, it is not specified,
#' all data will be used to fit the model. More than one condition can be
#' specified in \code{...}, e.g.,
#' \code{fitFarringtonManning('remission', 'pbo', data, delta, arm \%in\% c('pbo', 'low dose'), cfb > 0.5)},
#' which is equivalent to:
#' \code{fitFarringtonManning('remission', 'pbo', data, delta, arm \%in\% c('pbo', 'low dose') & cfb > 0.5)}.
#' Note that if more than one treatment arm are present in the data after
#' applying filter in \code{...}, models are fitted for placebo verse
#' each of the treatment arms.
#' @param delta the rate difference between a treatment arm and placebo under
#' the null. 0 by default.
#'
#' @returns a data frame with three columns:
#' \describe{
#' \item{\code{arm}}{name of the treatment arm. }
#' \item{\code{placebo}}{name of the placebo arm. }
#' \item{\code{estimate}}{estimate of rate difference. }
#' \item{\code{p}}{one-sided p-value for log odds ratio (treated vs placebo). }
#' \item{\code{info}}{sample size in the subset with \code{NA} being removed. }
#' \item{\code{z}}{the z statistics of log odds ratio (treated vs placebo). }
#' }
#'
#' @references Farrington, Conor P., and Godfrey Manning. "Test statistics and sample size formulae for comparative binomial trials with null hypothesis of non-zero risk difference or non-unity relative risk." Statistics in medicine 9.12 (1990): 1447-1454.
#'
#' @export
#'
fitFarringtonManning <- function(endpoint, placebo, data, alternative, ..., delta = 0) {
if(!is.character(endpoint) || length(endpoint) != 1){
stop("endpoint must be a single character string")
}
if(!is.character(placebo) || length(placebo) != 1){
stop("placebo must be a single character string")
}
if(!is.data.frame(data)){
stop("data must be a data frame")
}
alternative <- match.arg(alternative, choices = c('greater', 'less'))
required_cols <- c('arm', endpoint)
if(!all(required_cols %in% names(data))){
stop('Columns <',
paste0(setdiff(required_cols, names(data)), collapse = ', '),
'> are not present in locked data. ',
'Please check endpoint\'s name. ')
}
if(delta < -1 || delta > 1){
stop('delta should be in [-1, 1]. ')
}
# Prepare the data based on condition ...
filtered_data <- if(...length() == 0){
data
}else{
tryCatch({
data %>% dplyr::filter(...)
},
error = function(e){
stop('Error in filtering data for fitting Farrington-Manning test. ',
'Please check condition in ..., ',
'which should be compatible with dplyr::filter. ')
})
}
# Check if any data remains after filtering
if (nrow(filtered_data) == 0) {
stop("No data remaining after applying subset condition. ")
}
treatment_arms <- setdiff(unique(filtered_data$arm), placebo) %>% sort()
ret <- NULL
for(trt_arm in treatment_arms){
sub_data <- filtered_data %>%
dplyr::filter(.data$arm %in% c(placebo, trt_arm)) %>%
dplyr::filter(!is.na(.data[[endpoint]]))
p1 <- mean(sub_data[[endpoint]][sub_data$arm %in% trt_arm])
p2 <- mean(sub_data[[endpoint]][sub_data$arm %in% placebo])
n1 <- sum(sub_data$arm %in% trt_arm)
n2 <- sum(sub_data$arm %in% placebo)
delta <- 0
# standard deviation of the rate difference under the null hypothesis (risk difference = -delta)
theta <- n2/n1
d <- -p1 * delta * (1 + delta)
c <- delta^2 + delta * (2 * p1 + theta + 1) + p1 + theta * p2
b <- -(1 + theta + p1 + theta * p2 + delta * (theta + 2))
a <- 1 + theta
v <- b^3/(27*a^3) - b*c/(6*a^2) + d/(2*a)
u <- sign(v)*sqrt(b^2/(9*a^2) - c/(3*a))
w <- (pi + acos( max(min(1, v/u^3), 0, na.rm = TRUE) ))/3
p1_null <- 2*u*cos(w) - b/(3*a)
p2_null <- p1_null - delta
sd_diff_null <- sqrt(p1_null*(1 - p1_null)/n1 + p2_null*(1 - p2_null)/n2)
z <- (p1 - p2 - delta)/sd_diff_null
p <- ifelse(alternative == 'greater', 1 - pnorm(z), pnorm(z))
info <- nrow(sub_data)
ret <- rbind(ret, data.frame(arm = trt_arm, placebo = placebo,
estimate = p1 - p2,
p = p, info = info, z = z)
)
}
rownames(ret) <- NULL
class(ret) <- c('fit_fm', class(ret))
ret
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.