Nothing
t1waybt <- function(formula, data, tr = 0.2, nboot = 599, ...){
if (missing(data)) {
mf <- model.frame(formula)
} else {
mf <- model.frame(formula, data)
}
cl <- match.call()
x <- split(model.extract(mf, "response"), mf[,2])
if (tr==0.5) warning("Comparing medians should not be done with this function!")
grp <- 1:length(x)
J <- length(x)
for(j in 1:J){
temp<-x[[j]]
x[[j]]<-temp[!is.na(temp)] # Remove any missing values.
}
bvec <- array(0,c(J,2,nboot))
hval <- vector("numeric",J)
#if(SEED)set.seed(2) # set seed of random number generator so that
for(j in 1:J){
hval[j] <- length(x[[grp[j]]])-2*floor(tr*length(x[[grp[j]]]))
xcen <- x[[grp[j]]]-mean(x[[grp[j]]],tr)
data <- matrix(sample(xcen,size=length(x[[grp[j]]])*nboot,replace=TRUE),nrow=nboot)
bvec[j,,] <- apply(data,1,trimparts,tr) # A 2 by nboot matrix. The first row
}
m1 <- bvec[,1,] # J by nboot matrix containing the bootstrap trimmed means
m2 <- bvec[,2,] # J by nboot matrix containing the bootstrap sq standard errors
wvec <- 1/m2 # J by nboot matrix of w values
uval <- apply(wvec,2,sum) # Vector having length nboot
blob <- wvec*m1
xtil <- apply(blob,2,sum)/uval # nboot vector of xtil values
blob1 <- matrix(0,J,nboot)
for (j in 1:J)blob1[j,] <- wvec[j,]*(m1[j,]-xtil)^2
avec <- apply(blob1,2,sum)/(length(x)-1)
blob2 <- (1-wvec/uval)^2/(hval-1)
cvec <- apply(blob2,2,sum)
cvec <- 2*(length(x)-2)*cvec/(length(x)^2-1)
testb <- avec/(cvec+1)
ct <- sum(is.na(testb))
if(ct>0){
warning("Some bootstrap estimates of the test statistic could not be computed.")
}
neff <- sum(!is.na(testb))
test <- t1wayv2(x,tr=tr,grp=grp)
pval <- mean(test$TEST<=testb,na.rm=TRUE)
result <- list(test=test$TEST,p.value=pval,Var.Explained=test$Var.Explained,Effect.Size=test$Effect.Size,
nboot.eff = neff, call = cl)
class(result) <- c("t1waybt")
result
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.