Nothing
#' Plot the fitted results for a tidal object by month
#'
#' Plot a tidal object to view the response variable observations, predictions, and normalized results separately for each month.
#'
#' @param dat_in input tidal or tidalmean object
#' @param month numeric indicating months to plot
#' @param tau numeric vector of quantiles to plot, defaults to all in object if not supplied
#' @param predicted logical indicating if standard predicted values are plotted, default \code{TRUE}, otherwise normalized predictions are plotted
#' @param dt_rng Optional chr string indicating the date range of the plot. Must be two values in the format 'YYYY-mm-dd' which is passed to \code{\link{as.Date}}.
#' @param col_vec chr string of plot colors to use, passed to \code{\link{gradcols}}. Any color palette from RColorBrewer can be used as a named input. Palettes from grDevices must be supplied as the returned string of colors for each palette.
#' @param logspace logical indicating if plots are in log space
#' @param ncol numeric argument passed to \code{\link[ggplot2]{facet_wrap}} indicating number of facet columns
#' @param grids logical indicating if grid lines are present
#' @param pretty logical indicating if my subjective idea of plot aesthetics is applied, otherwise the \code{\link[ggplot2]{ggplot}} default themes are used
#' @param lwd numeric value indicating width of lines
#' @param size numeric value indicating size of points
#' @param alpha numeric value indicating transparency of points or lines
#' @param ... arguments passed to other methods
#'
#' @details The plots are similar to those produced by \code{\link{fitplot}} except the values are faceted by month. This allows an evaluation of trends over time independent of seasonal variation. Multiple observations within each month for each year are averaged for a smoother plot.
#'
#' @import dplyr ggplot2 RColorBrewer
#'
#' @export
#'
#' @return A \code{\link[ggplot2]{ggplot}} object that can be further modified
#'
#' @seealso \code{\link{fitplot}}, \code{\link{prdnrmplot}}, \code{\link{sliceplot}}
#'
#' @examples
#'
#' ## load a fitted tidal object
#' data(tidfit)
#'
#' # plot using defaults
#' fitmoplot(tidfit)
#' \dontrun{
#' # get the same plot but use default ggplot settings
#' fitmoplot(tidfit, pretty = FALSE)
#'
#' # plot specific quantiles
#' fitmoplot(tidfit, tau = c(0.1, 0.9))
#'
#' # plot the normalized predictions
#' fitmoplot(tidfit, predicted = FALSE)
#'
#' # modify the plot as needed using ggplot scales, etc.
#'
#' library(ggplot2)
#'
#' fitmoplot(tidfit, pretty = FALSE, linetype = 'dashed') +
#' theme_classic() +
#' scale_y_continuous(
#' 'Chlorophyll',
#' limits = c(0, 5)
#' ) +
#' scale_colour_manual(
#' 'Predictions',
#' labels = c('lo', 'md', 'hi'),
#' values = c('red', 'green', 'blue'),
#' guide = guide_legend(reverse = TRUE)
#' )
#'
#' # plot a tidalmean object
#' data(tidfitmean)
#'
#' fitmoplot(tidfitmean)
#' }
fitmoplot <- function(dat_in, ...) UseMethod('fitmoplot')
#' @rdname fitmoplot
#'
#' @export
#'
#' @method fitmoplot tidal
fitmoplot.tidal <- function(dat_in, month = c(1:12), tau = NULL, predicted = TRUE, logspace = TRUE, dt_rng = NULL, ncol = NULL, col_vec = NULL, grids = TRUE, pretty = TRUE, lwd = 1, size = 2, alpha = 1, ...){
# sanity check
if(!any(grepl('^fit|^norm', names(dat_in))))
stop('No fitted data in tidal object, run modfit function')
# convert month vector to those present in data
month <- month[month %in% dat_in$month]
if(length(month) == 0) stop('No observable data for the chosen month')
# convert to df for plotting, get relevant columns
to_plo <- data.frame(dat_in)
sel_vec <- grepl('^date$|^year$|^month$|^res$|^fit|^norm', names(to_plo))
to_plo <- to_plo[, sel_vec]
# get selected months
to_plo <- to_plo[to_plo$month %in% month, , drop = FALSE]
# subset data by dt_rng
if(!is.null(dt_rng)){
dt_rng <- as.Date(dt_rng, format = '%Y-%m-%d')
if(any(is.na(dt_rng)) & length(dt_rng) != 2)
stop('Argument for dt_rng must be two-element character string of format "YYYY-mm-dd"')
sel_vec <- with(to_plo, date >= dt_rng[1] & date <= dt_rng[2])
to_plo <- to_plo[sel_vec, ]
}
# get names of the quantiles for norms and preds to plot
if(is.null(tau)){
tau_nrms <- grep('^norm', names(to_plo))
tau_fits <- grep('^fit', names(to_plo))
} else {
if(length(grep(paste0(tau, '$', collapse = '|'), names(to_plo))) == 0)
stop('Specified tau not in object')
tau_nrms <- grep(paste0('norm', tau, collapse = '|'), names(to_plo))
tau_fits <- grep(paste0('fit', tau, collapse = '|'), names(to_plo))
}
# long format for plotting
# need to average by month for smoother plots if multiple days per month
nrms <- tidyr::gather(to_plo, 'nrms_variable', 'nrms_value', tau_nrms) %>%
select(year, month, nrms_variable, nrms_value) %>%
group_by(year, month, nrms_variable) %>%
summarize(
nrms_value = mean(nrms_value, na.rm = TRUE)
) %>%
ungroup %>%
mutate(
day = '01',
month2 = month
) %>%
tidyr::unite('date', year, month, day, sep = '-') %>%
mutate(date = as.Date(date, '%Y-%m-%d')) %>%
rename(month = month2)
fits <- tidyr::gather(to_plo, 'fits_variable', 'fits_value', tau_fits) %>%
select(year, month, fits_variable, fits_value)%>%
group_by(year, month, fits_variable) %>%
summarize(
fits_value = mean(fits_value, na.rm = TRUE)
) %>%
ungroup %>%
mutate(
day = '01',
month2 = month
) %>%
tidyr::unite('date', year, month, day, sep = '-') %>%
mutate(date = as.Date(date, '%Y-%m-%d')) %>%
rename(month = month2)
# y-axis label
ylabel <- attr(dat_in, 'reslab')
# back-transform if needed
if(!logspace){
to_plo$res <- exp(to_plo$res)
nrms$nrms_value <- exp(nrms$nrms_value)
fits$fits_value <- exp(fits$fits_value)
# strip log, ln from yaxs label if there
ylabel <- gsub('ln-|log-', '', as.character(ylabel))
ylabel <- as.expression(parse(text = ylabel))
}
# formatting for quantile legend labels
quants <- gsub('^fit', '', names(to_plo)[tau_fits])
quants <- lapply(as.list(quants),
function(x) bquote(italic(tau) ~ .(x))
)
# months labels as text
mo_lab <- data.frame(
num = seq(1:12),
txt = c('January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December')
)
mo_lab <- mo_lab[mo_lab$num %in% month, ]
to_plo$month <- factor(to_plo$month, levels = mo_lab$num, labels = mo_lab$txt)
fits$month <- factor(fits$month, levels = mo_lab$num, labels = mo_lab$txt)
nrms$month <- factor(nrms$month, levels = mo_lab$num, labels = mo_lab$txt)
# bare bones plot
p <- ggplot(to_plo, aes(x = date, y = res, group = month)) +
geom_point(aes(size = 'Observed'), alpha = alpha, na.rm = TRUE) +
facet_wrap(~ month, ncol = ncol) +
scale_size_manual('', values = size)
# plot fits or nrms
if(predicted){
p <- p +
geom_line(data = fits, aes(y = fits_value, group = fits_variable,
colour = fits_variable), size = lwd, alpha = alpha)
leglab <- c('Predicted')
} else {
p <- p +
geom_line(data = nrms, aes(y = nrms_value, group = nrms_variable,
colour = nrms_variable), size = lwd, alpha = alpha)
leglab <- c('Normalized')
}
# exit if pretty is F
if(!pretty) return(p)
##
# change aesthetics
# pick colors
# special case for three quantiles
colpal <- gradcols(col_vec = col_vec)
cols <- colpal[round(seq(1, length(colpal), length = length(quants)))]
if(is.null(col_vec)){
if(length(quants) == 3) cols <- colpal[c(1, 9, 10)]
if(length(quants) == 2) cols <- colpal[c(1, 9)]
if(length(quants) == 1) cols <- colpal[c(1)]
}
p <- p +
theme_bw() +
scale_colour_manual(
name = leglab,
labels=quants,
values = cols,
guide = guide_legend(reverse = TRUE)
) +
theme(
axis.title.x = element_blank(),
legend.position = 'top',
legend.box = 'horizontal'
) +
scale_y_continuous(ylabel)
# remove grid lines
if(!grids)
p <- p +
theme(
panel.grid.major = element_blank(),
panel.grid.minor = element_blank()
)
return(p)
}
#' @rdname fitmoplot
#'
#' @export
#'
#' @method fitmoplot tidalmean
fitmoplot.tidalmean <- function(dat_in, month = c(1:12), predicted = TRUE, logspace = TRUE, dt_rng = NULL, ncol = NULL, col_vec = NULL, grids = TRUE, pretty = TRUE, lwd = 1, size = 2, alpha = 1, ...){
# sanity check
if(!any(grepl('^fit|^norm', names(dat_in))))
stop('No fitted data in tidal object, run modfit function')
# convert month vector to those present in data
month <- month[month %in% dat_in$month]
if(length(month) == 0) stop('No observable data for the chosen month')
# convert to df for plotting, get relevant columns
to_plo <- data.frame(dat_in)
sel_vec <- grepl('^date$|^year$|^month$|^res$|fit|norm', names(to_plo))
to_plo <- to_plo[, sel_vec]
# get selected months
to_plo <- to_plo[to_plo$month %in% month, , drop = FALSE]
# subset data by dt_rng
if(!is.null(dt_rng)){
dt_rng <- as.Date(dt_rng, format = '%Y-%m-%d')
if(any(is.na(dt_rng)) & length(dt_rng) != 2)
stop('Argument for dt_rng must be two-element character string of format "YYYY-mm-dd"')
sel_vec <- with(to_plo, date >= dt_rng[1] & date <= dt_rng[2])
to_plo <- to_plo[sel_vec, ]
}
# select preds and norms
fits <- select(to_plo, date, year, month, fits, bt_fits)
nrms <- select(to_plo, date, year, month, norm, bt_norm)
# y-axis label
ylabel <- attr(dat_in, 'reslab')
# use back-transformed if TRUE
if(!logspace){
to_plo$res <- exp(to_plo$res)
nrms <- mutate(nrms, nrms_variable = bt_norm)
nrms <- select(nrms, -norm, -bt_norm, -date)
fits <- mutate(fits, fits_variable = bt_fits)
fits <- select(fits, -fits, -bt_fits, -date)
# strip log, ln from yaxs label if there
ylabel <- gsub('ln-|log-', '', as.character(ylabel))
ylabel <- as.expression(parse(text = ylabel))
} else {
nrms <- mutate(nrms, nrms_variable = norm)
nrms <- select(nrms, -bt_norm, -norm, -date)
fits <- mutate(fits, fits_variable = fits)
fits <- select(fits, -bt_fits, -fits, -date)
}
# need to average by month for smoother plots if multiple days per month
nrms <- group_by(nrms, year, month) %>%
summarize(
nrms_variable = mean(nrms_variable, na.rm = TRUE)
) %>%
ungroup %>%
mutate(
day = '01',
month2 = month
) %>%
tidyr::unite('date', year, month, day, sep = '-') %>%
mutate(date = as.Date(date, '%Y-%m-%d')) %>%
rename(month = month2)
fits <- group_by(fits, year, month) %>%
summarize(
fits_variable = mean(fits_variable, na.rm = TRUE)
) %>%
ungroup %>%
mutate(
day = '01',
month2 = month
) %>%
tidyr::unite('date', year, month, day, sep = '-') %>%
mutate(date = as.Date(date, '%Y-%m-%d')) %>%
rename(month = month2)
# months labels as text
mo_lab <- data.frame(
num = seq(1:12),
txt = c('January', 'February', 'March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December')
)
mo_lab <- mo_lab[mo_lab$num %in% month, ]
to_plo$month <- factor(to_plo$month, levels = mo_lab$num, labels = mo_lab$txt)
fits$month <- factor(fits$month, levels = mo_lab$num, labels = mo_lab$txt)
nrms$month <- factor(nrms$month, levels = mo_lab$num, labels = mo_lab$txt)
# bare bones plot
p <- ggplot(to_plo, aes(x = date, y = res, group = month)) +
geom_point(aes(size = 'Observed'), alpha = alpha, na.rm = TRUE) +
facet_wrap(~ month, ncol = ncol) +
scale_size_manual('', values = size)
# plot fits or nrms
if(predicted){
p <- p +
geom_line(data = fits, aes(y = fits_variable, colour = 'fits_variable'), size = lwd, alpha = alpha)
leglab <- c('Predicted')
} else {
p <- p +
geom_line(data = nrms, aes(y = nrms_variable, colour = 'nrms_variable'), size = lwd, alpha = alpha)
leglab <- c('Normalized')
}
# exit if pretty is F
if(!pretty) return(p)
##
# change aesthetics
# pick colors
cols <- gradcols(col_vec = col_vec)
p <- p +
theme_bw() +
scale_colour_manual(
labels = leglab,
values = cols
) +
theme(
axis.title.x = element_blank(),
legend.title = element_blank(),
legend.position = 'top',
legend.box = 'horizontal'
) +
scale_y_continuous(ylabel)
# remove grid lines
if(!grids)
p <- p +
theme(
panel.grid.major = element_blank(),
panel.grid.minor = element_blank()
)
return(p)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.