Nothing
#' Plot combined predicted and normalized results from a tidal object
#'
#' Plot combined predicted and normalized results from a tidal object to evaluate the influence of salinity or flow changes on the response variable. The plot is similar to that produced by \code{\link{fitplot}} except predicted values are shown as points and observed values are removed.
#'
#' @param dat_in input tidal or tidalmean object
#' @param tau numeric vector of quantiles to plot, defaults to all in object if not supplied
#' @param annuals logical indicating if plots are annual aggregations of results
#' @param logspace logical indicating if plots are in log space
#' @param dt_rng Optional chr string indicating the date range of the plot. Must be two values in the format 'YYYY-mm-dd' which is passed to \code{\link{as.Date}}.
#' @param col_vec chr string of plot colors to use, passed to \code{\link{gradcols}}. Any color palette from RColorBrewer can be used as a named input. Palettes from grDevices must be supplied as the returned string of colors for each palette.
#' @param lwd numeric value indicating width of lines
#' @param size numeric value indicating size of points
#' @param alpha numeric value indicating transparency of points or lines
#' @param min_mo numeric value from one to twelve indicating the minimum number of months with observations for averaging by years, applies only if \code{annuals = TRUE}. See \code{\link{annual_agg}}.
#' @param mo_strt numeric indicating month to start aggregation years, defaults to October for USGS water year from October to September, applies only if \code{annuals = TRUE}. See \code{\link{annual_agg}}.
#' @param pretty logical indicating if my subjective idea of plot aesthetics is applied, otherwise the \code{\link[ggplot2]{ggplot}} default themes are used
#' @param plot logical if plot is returned, otherwise data used in the plot
#' @param ... arguments passed to \code{\link[ggplot2]{geom_line}}
#'
#' @import dplyr ggplot2 RColorBrewer
#'
#' @seealso \code{\link{fitplot}}, \code{\link{sliceplot}}
#'
#' @export
#'
#' @return A \code{\link[ggplot2]{ggplot}} object that can be further modified
#'
#' @examples
#'
#' ## load a fitted tidal object
#' data(tidfit)
#'
#' ## plot using defaults
#' prdnrmplot(tidfit)
#'
#' ## get the same plot but use default ggplot settings
#' prdnrmplot(tidfit, pretty = FALSE)
#'
#' ## plot in log space
#' prdnrmplot(tidfit, logspace = TRUE)
#'
#' ## plot specific quantiles
#' prdnrmplot(tidfit, tau = c(0.1, 0.9))
#'
#' ## plot the normalized predictions
#' prdnrmplot(tidfit, predicted = FALSE)
#'
#' ## plot as monthly values
#' prdnrmplot(tidfit, annuals = FALSE)
#'
#' ## format the x-axis is using annual aggregations
#' library(ggplot2)
#'
#' prdnrmplot(tidfit, annual = TRUE) +
#' scale_x_date(limits = as.Date(c('2000-01-01', '2012-01-01')))
#'
#' ## modify the plot as needed using ggplot scales, etc.
#' prdnrmplot(tidfit, pretty = FALSE, linetype = 'dashed') +
#' theme_classic() +
#' scale_y_continuous(
#' 'Chlorophyll',
#' limits = c(0, 50)
#' ) +
#' scale_colour_manual(
#' '',
#' labels = c('lo', 'md', 'hi'),
#' values = c('red', 'green', 'blue'),
#' guide = guide_legend(reverse = TRUE)
#' )
#'
#' ## plot a tidalmean object
#' data(tidfitmean)
#'
#' prdnrmplot(tidfitmean)
#'
prdnrmplot <- function(dat_in, ...) UseMethod('prdnrmplot')
#' @rdname prdnrmplot
#'
#' @export
#'
#' @method prdnrmplot tidal
prdnrmplot.tidal <- function(dat_in, tau = NULL, annuals = TRUE, logspace = TRUE, dt_rng = NULL, col_vec = NULL, lwd = 1, size = 2, alpha = 1, min_mo = 9, mo_strt = 10, pretty = TRUE, plot = TRUE, ...){
# sanity checks
if(!any(grepl('^fit', names(dat_in))))
stop('No fitted data in tidal object, run respred or modfit function')
if(!any(grepl('^norm', names(dat_in))))
stop('No normalized data in tidal object, run resnorm or modfit function')
# convert to df for plotting, get relevant columns
to_plo <- dat_in
sel_vec <- grepl('^date$|^res$|^fit|^norm', names(to_plo))
to_plo <- to_plo[, sel_vec]
# subset data by dt_rng
if(!is.null(dt_rng)){
dt_rng <- as.Date(dt_rng, format = '%Y-%m-%d')
if(any(is.na(dt_rng)) & length(dt_rng) != 2)
stop('Argument for dt_rng must be two-element character string of format "YYYY-mm-dd"')
sel_vec <- with(to_plo, date >= dt_rng[1] & date <= dt_rng[2])
to_plo <- to_plo[sel_vec, ]
}
# get names of the quantiles for norms and preds to plot
if(is.null(tau)){
tau_nrms <- grep('^norm', names(to_plo), value = TRUE)
tau_fits <- grep('^fit', names(to_plo), value = TRUE)
} else {
if(length(grep(paste0(tau, '$', collapse = '|'), names(to_plo))) == 0)
stop('Specified tau not in object')
tau_nrms <- grep(paste0('norm', tau, collapse = '|'), names(to_plo), value = TRUE)
tau_fits <- grep(paste0('fit', tau, collapse = '|'), names(to_plo), value = TRUE)
}
# annual aggregations if TRUE
if(annuals){
to_plo <- annual_agg(to_plo, min_mo = min_mo, mo_strt = mo_strt, logspace = logspace)
}
# long format for plotting
# remove 'norm' and 'fit' to combine mapping
nrms <- tidyr::gather(to_plo, 'taus', 'nrms_value', one_of(tau_nrms)) %>%
select(date, taus, nrms_value) %>%
mutate(taus = gsub('^norm', '', taus))
fits <- tidyr::gather(to_plo, 'taus', 'fits_value', one_of(tau_fits)) %>%
select(date, taus, fits_value) %>%
mutate(taus = gsub('^fit', '', taus))
# y-axis label
ylabel <- attr(dat_in, 'reslab')
# back-transform if needed
if(!logspace){
nrms$nrms_value <- exp(nrms$nrms_value)
fits$fits_value <- exp(fits$fits_value)
# strip log, ln from yaxs label if there
ylabel <- gsub('ln-|log-', '', as.character(ylabel))
ylabel <- as.expression(parse(text = ylabel))
}
# return data if F
if(!plot){
out <- list(fits = fits, nrms = nrms)
return(out)
}
# formatting for quantile legend labels
quants <- gsub('^fit', '', tau_fits)
quants <- lapply(as.list(quants),
function(x) bquote(italic(tau ~ .(x)))
)
# bare bones plot, fits as points, nrms as lines
p <- ggplot(fits, aes(x = date, y = fits_value, colour = taus)) +
geom_point(size = size, alpha = alpha) +
geom_line(data = nrms, aes(x = date, y = nrms_value, group = taus,
colour = taus), size = lwd, alpha = alpha)
# exit if pretty is F
if(!pretty) return(p)
##
# change aesthetics
# pick colors
# special case for three quantiles
colpal <- gradcols(col_vec = col_vec)
cols <- colpal[round(seq(1, length(colpal), length = length(quants)))]
if(is.null(col_vec)){
if(length(quants) == 3) cols <- colpal[c(1, 9, 10)]
if(length(quants) == 2) cols <- colpal[c(1, 9)]
if(length(quants) == 1) cols <- colpal[c(1)]
}
p <- p +
theme_bw() +
scale_colour_manual(
name = 'Normalized (lines)\nPredicted (pts)',
labels = quants,
values = cols,
guide = guide_legend(reverse = TRUE)
) +
theme(axis.title.x = element_blank()) +
scale_y_continuous(ylabel)
return(p)
}
#' @rdname prdnrmplot
#'
#' @export
#'
#' @method prdnrmplot tidalmean
prdnrmplot.tidalmean <- function(dat_in, annuals = TRUE, logspace = TRUE, dt_rng = NULL, col_vec = NULL, lwd = 1, size = 2, alpha = 1, min_mo = 9, mo_strt = 10, pretty = TRUE, plot = TRUE, ...){
# sanity check
if(!any(grepl('^fit|^norm', names(dat_in))))
stop('No fitted data in tidal object, run modfit function')
# convert to df for plotting, get relevant columns
to_plo <- dat_in
sel_vec <- grepl('^date$|^res$|fit|norm', names(to_plo))
to_plo <- to_plo[, sel_vec]
# subset data by dt_rng
if(!is.null(dt_rng)){
dt_rng <- as.Date(dt_rng, format = '%Y-%m-%d')
if(any(is.na(dt_rng)) & length(dt_rng) != 2)
stop('Argument for dt_rng must be two-element character string of format "YYYY-mm-dd"')
sel_vec <- with(to_plo, date >= dt_rng[1] & date <= dt_rng[2])
to_plo <- to_plo[sel_vec, ]
}
# annual aggregations if TRUE
if(annuals){
to_plo <- annual_agg(to_plo, min_mo = min_mo, mo_strt = mo_strt, logspace = logspace)
}
# separate nrms and fits objects for plotting
nrms <- select(to_plo, date, norm, bt_norm)
fits <- select(to_plo, date, fits, bt_fits)
# y-axis label
ylabel <- attr(dat_in, 'reslab')
# use back-transformed if TRUE
if(!logspace){
to_plo$res <- exp(to_plo$res)
nrms <- mutate(nrms, nrms_variable = bt_norm)
nrms <- select(nrms, -norm, -bt_norm)
fits <- mutate(fits, fits_variable = bt_fits)
fits <- select(fits, -fits, -bt_fits)
# strip log, ln from yaxs label if there
ylabel <- gsub('ln-|log-', '', as.character(ylabel))
ylabel <- as.expression(parse(text = ylabel))
} else {
nrms <- mutate(nrms, nrms_variable = norm)
nrms <- select(nrms, -bt_norm, -norm)
fits <- mutate(fits, fits_variable = fits)
fits <- select(fits, -bt_fits, -fits)
}
# return data if F
if(!plot){
out <- list(fits = fits, nrms = nrms)
return(out)
}
# bare bones plot, fits as points, nrms as lines
p <- ggplot(fits, aes(x = date, y = fits_variable)) +
geom_point(size = size, alpha = alpha, aes(colour = 'fits_variable')) +
geom_line(data = nrms, aes(x = date, y = nrms_variable, colour = 'nrms_variable'),
size = lwd, alpha = alpha)
# exit if pretty is F
if(!pretty) return(p)
##
# change aesthetics
# pick colors
# special case for three quantiles
cols <- gradcols(col_vec = col_vec)
if(is.null(col_vec)) cols <- cols[c(2, 9)]
p <- p +
theme_bw() +
scale_colour_manual(
labels = c('Predicted', 'Normalized'),
values = c(cols[1], cols[length(cols)])
) +
guides(color=guide_legend(override.aes=list(shape=c(16,NA),linetype=c(0,1)))) +
theme(
axis.title.x = element_blank(),
legend.title = element_blank()
) +
scale_y_continuous(ylabel)
return(p)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.