Nothing
#' @importFrom dplyr select distinct filter arrange mutate left_join %>%
#' @importFrom readr write_tsv
gseaEnrichment <- function (hostName, outputDirectory, projectName, geneRankList, geneSet, geneSetDes=NULL, collapseMethod="mean", minNum=10, maxNum=500, sigMethod="fdr", fdrThr=0.05, topThr=10, perNum=1000, p=1, isOutput=TRUE, saveRawGseaResult=FALSE, plotFormat="png", nThreads=1) {
projectFolder <- file.path(outputDirectory, paste("Project_", projectName, sep=""))
if (!dir.exists(projectFolder)) {
dir.create(projectFolder)
}
colnames(geneRankList) <- c("gene", "score")
sortedScores <- sort(geneRankList$score, decreasing=TRUE)
geneSetName <- geneSet %>% select(.data$geneSet, link=.data$description) %>% distinct()
effectiveGeneSet <- geneSet %>% filter(.data$gene %in% geneRankList$gene)
geneSetNum <- tapply(effectiveGeneSet$gene, effectiveGeneSet$geneSet, length)
geneSetNum <- geneSetNum[geneSetNum>=minNum & geneSetNum<=maxNum]
if (length(geneSetNum)==0) {
stop("ERROR: The number of annotated IDs for all functional categories are not from ", minNum," to ", maxNum, " for the GSEA enrichment method.")
}
# collapse rank list
a <- tapply(geneRankList$score, geneRankList$gene, collapseMethod, na.rm=TRUE)
geneRankList <- data.frame(gene=names(a), score=as.numeric(a), stringsAsFactors=FALSE)
gseaRnk <- file.path(projectFolder, paste("Project_", projectName, "_GSEA.rnk", sep=""))
write_tsv(geneRankList, gseaRnk, col_names=FALSE)
outputF <- file.path(projectFolder, paste0("Project_", projectName, "_GSEA/"))
relativeF <- file.path(".", paste0("Project_", projectName, "_GSEA"))
if (!dir.exists(outputF) && isOutput) {
dir.create(outputF)
}
inputDf <- prepareInputMatrixGsea(geneRankList, effectiveGeneSet)
gseaRes <- swGsea(inputDf, thresh_type="val", perms=perNum,
min_set_size=minNum, max_set_size=maxNum, p=p,
nThreads=nThreads, rng_seed=as.integer(format(Sys.time(), "%H%M%S"))
)
if (saveRawGseaResult) {
saveRDS(gseaRes, file=file.path(outputF, "rawGseaResult.rds"))
}
enrichRes <- gseaRes$Enrichment_Results %>%
mutate(geneSet = rownames(gseaRes$Enrichment_Results)) %>%
select(.data$geneSet, enrichmentScore=.data$ES, normalizedEnrichmentScore=.data$NES, pValue=.data$p_val, FDR=.data$fdr)
# TODO: handle errors
if (sigMethod == "fdr") {
sig <- filter(enrichRes, .data$FDR < fdrThr)
insig <- filter(enrichRes, .data$FDR >= fdrThr)
} else if (sigMethod == "top") {
enrichRes <- arrange(enrichRes, .data$FDR, .data$pValue)
tmpRes <- getTopGseaResults(enrichRes, topThr)
sig <- tmpRes[[1]]
insig <-tmpRes[[2]]
}
numSig <- nrow(sig)
if (numSig == 0) {
warning("ERROR: No significant set is identified based on FDR ", fdrThr, "!\n")
return(NULL)
}
if (!is.null(insig)) {
insig$leadingEdgeNum <- unname(sapply(insig$geneSet, function(geneSet) {
rsum <- gseaRes$Running_Sums[, geneSet] # Running sum is a matrix of gene by gene set
maxPeak <- max(rsum)
minPeak <- min(rsum)
if (abs(maxPeak) >= abs(minPeak)) {
peakIndex <- match(max(rsum), rsum)
leadingEdgeNum <- sum(gseaRes$Items_in_Set[[geneSet]]$rank <= peakIndex)
} else {
peakIndex <- match(min(rsum), rsum)
leadingEdgeNum <- sum(gseaRes$Items_in_Set[[geneSet]]$rank >= peakIndex)
}
return(leadingEdgeNum)
}))
}
plotSuffix <- ifelse("png" %in% plotFormat, "png", "svg")
sig <- sig %>% left_join(geneSetName, by="geneSet") %>%
mutate(size = unname(sapply(geneSet, function(x) nrow(gseaRes$Items_in_Set[[x]])))) %>%
mutate(plotPath = unname(sapply(geneSet, function(x) file.path(relativeF, paste0(sanitizeFileName(x), ".", plotSuffix)))))
leadingGeneNum <- vector("integer", numSig)
leadingGenes <- vector("character", numSig)
for (i in 1:numSig) {
geneSet <- sig[[i, "geneSet"]]
es <- sig[[i, "enrichmentScore"]]
genes <- gseaRes$Items_in_Set[[geneSet]] # rowname is gene and one column called rank
rsum <- gseaRes$Running_Sums[, geneSet]
peakIndex <- match(ifelse(es > 0, max(rsum), min(rsum)), rsum)
if (es > 0) {
indexes <- genes$rank <= peakIndex
} else {
indexes <- genes$rank >= peakIndex
}
leadingGeneNum[[i]] <- sum(indexes)
leadingGenes[[i]] <- paste(rownames(genes)[indexes], collapse=";")
if (isOutput) {
# Plot GSEA-like enrichment plot
if (!is.null(geneSetDes)) {
# same name of variable and column name, use quasiquotation !!
title <- as.character((geneSetDes %>% filter(.data$geneSet == !!geneSet))[1, "description"])
} else {
title <- geneSet
}
if (!is.vector(plotFormat)) {
plotEnrichmentPlot(title, outputF, geneSet, format=plotFormat, gseaRes$Running_Sums[, geneSet], genes$rank, sortedScores, peakIndex)
} else {
for (format in plotFormat) {
plotEnrichmentPlot(title, outputF, geneSet, format=format, gseaRes$Running_Sums[, geneSet], genes$rank, sortedScores, peakIndex)
}
}
}
}
sig$leadingEdgeNum <- leadingGeneNum
sig$leadingEdgeId <- leadingGenes
return(list(enriched=sig, background=insig))
}
#' @importFrom svglite svglite
plotEnrichmentPlot <- function(title, outputDir, fileName, format="png", runningSums, ranks, scores, peakIndex) {
if (format == "png") {
png(file.path(outputDir, paste0(sanitizeFileName(fileName), ".png")), bg="transparent", width=2000, height=2000)
cex <- list(main=5, axis=2.5, lab=3.2)
} else if (format == "svg") {
svglite(file.path(outputDir, paste0(sanitizeFileName(fileName), ".svg")), bg="transparent", width=7, height=7)
cex <- list(main=1.5, axis=0.6, lab=0.8)
# svg seems to have a problem with long title (figure margins too large)
if (nchar(title) > 80) {
title = paste0(substr(title, 1, 80), "...")
}
}
wrappedTitle <- strwrap(paste0("Enrichment plot: ", title), 60)
plot.new()
par(fig=c(0, 1, 0.5, 1), mar=c(0, 6, 6 * length(wrappedTitle), 2), cex.axis=cex$axis, cex.main=cex$main, cex.lab=cex$lab, lwd=2, new=TRUE)
plot(1:length(runningSums), runningSums,
type="l", main=paste(wrappedTitle, collapse="\n"),
xlab="", ylab="Enrichment Score", xaxt='n', lwd=3)
abline(v=peakIndex, lty=3)
par(fig=c(0, 1, 0.35, 0.5), mar=c(0, 6, 0, 2), new=TRUE)
plot(ranks, rep(1, length(ranks)), type="h",
xlim=c(1, length(scores)), ylim=c(0, 1), axes=FALSE, ann=FALSE)
par(fig=c(0, 1, 0, 0.35), mar=c(6, 6, 0, 2), cex.axis=cex$axis, cex.lab=cex$lab, new=TRUE)
# use polygon to greatly reduce file size of SVG
plot(1:length(scores), scores, type="n",
ylab="Ranked list metric", xlab="Rank in Ordered Dataset")
polygon(c(1, 1:length(scores), length(scores)), c(0, scores, 0), col="black")
abline(v=peakIndex, lty=3)
dev.off()
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.