Description Usage Arguments Value Author(s) References See Also Examples

SNP based adaptive association test for multiple phenotypes with GWAS summary statistics.

1 |

`Z` |
matrix of summary Z-scores, SNPs in rows and traits in columns. Or a vector of summary Z-scores for a single snp |

`v` |
estimated correlation matrix based on the summary Z-scores (output of estcov) |

`B` |
number of Monte Carlo samples simulated to compute p-values, the maximum number of MC simulations is 1e8 |

`pow` |
power used in SPU test. A vector of the powers. |

`transform` |
if TRUE, the inference is made on transformed Z |

`Ps` |
TRUE if input is p-value, FALSE if input is Z-scores. The default is FALSE. |

compute p-values for SPU(gamma) i.e. pow=1:8, and infinity aSPU, based on the minimum p-values over SPU(power) each row for single SNP

Junghi Kim, Yun Bai and Wei Pan

Junghi Kim, Yun Bai and Wei Pan (2015) An Adaptive Association Test for Multiple Phenotypes with GWAS Summary Statistics, Genetic Epidemiology, 8:651-663

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 | ```
# -- n.snp: number of SNPs
# -- n.trait: number of traits
# -- n.subject: number of subjects
n.snp <- 100
n.traits <- 10
n.subjects <- 1000
traits <- matrix(rnorm(n.subjects*n.traits), n.subjects, n.traits)
v <- cov(traits)
allZ <- rmvnorm(n.snp, sigma=v)
colnames(allZ) <- paste("trait", 1:n.traits, sep="")
rownames(allZ) <- paste("snp", 1:n.snp, sep="")
r <- estcov(allZ)
MTaSPUs(Z = allZ, v = r, B = 100, pow = c(1:4, Inf), transform = FALSE)
MTaSPUs(Z = allZ[1,], v = r, B = 100, pow = c(1:4, Inf), transform = FALSE)
minP(Zi= allZ[1,], r = r)
``` |

Embedding an R snippet on your website

Add the following code to your website.

For more information on customizing the embed code, read Embedding Snippets.