Nothing
### actuar: Actuarial Functions and Heavy Tailed Distributions
###
### Exact calculation of the aggregate claim amount distribution
### function by convolution. Requires a discrete distribution for
### claim amounts.
###
### AUTHORS: Vincent Goulet <vincent.goulet@act.ulaval.ca>
### and Louis-Philippe Pouliot
exact <- function(fx, pn, x.scale = 1)
{
## Some useful lengths
m <- length(fx) # 1 + maximum claim amount
n <- length(pn) - 1 # maximum number of claims
r <- n * m - n + 1 # maximum total amount of claims
## Initialization of the output vector
fs <- rep(0, r)
fs[1] <- pn[1] # Pr[N = 0]
## Convolutions
fxc <- 1
for (i in 1:n)
{
pos <- seq_len(i * m - i + 1)
fxc <- convolve(fx, rev(fxc), type = "open")
fs[pos] <- fs[pos] + fxc * pn[i + 1]
}
FUN <- approxfun((0:(length(fs) - 1)) * x.scale, pmin(cumsum(fs), 1),
method = "constant", yleft = 0, yright = 1, f = 0,
ties = "ordered")
class(FUN) <- c("ecdf", "stepfun", class(FUN))
assign("fs", fs, envir = environment(FUN))
assign("x.scale", x.scale, envir = environment(FUN))
FUN
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.